Skip to main content

Source Mechanisms

  • Chapter
  • First Online:
Acoustic Emission Testing

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 1944 Accesses

Abstract

Source mechanisms of AE are stated theoretically, based on elastodynamic theory. Elastic waves due to a micro-crack nucleation in a homogeneous medium are mainly discussed. Starting with integral representation of elastodynamics, Green’s functions and Lamb solutions are discussed. Then, theoretical AE waves are formulated as the elastic waves due to the dislocation models. One key issue is the spatial derivatives of Green ‘s functions. Associated with the source mechanisms, deconvolution analysis, moment tensor and radiation patterns are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aki K, Richards PG (1980) Quantitative seismology theory and methods, vol I. San Francisco, W.H, Freeman and Company

    Google Scholar 

  • Ben-Menahem A, Singh SJ (1981) Seismic waves and sources. Springer, New York

    Book  Google Scholar 

  • Breckenridge FR, Tschiegg CE, Greenspan M (1975) Acoustic emission: some applications of Lamb’s problem. J. Acoust Soc Am 57:626–631

    Article  Google Scholar 

  • Breckenridge FR, Greenspan M (1981) Surface-wave displacement: absolute measurements using a capacitance transducer. J Acoust Soc Am 69:1177–1185

    Article  Google Scholar 

  • Breckenridge FR (1982) Acoustic emission transducer calibration by means of the seismic surface pulse. J Acoust Emiss 1(2):87–94

    Google Scholar 

  • Dai S T, Labuz J F, Carvalho F (2000) Softening response of rock observed in plane-strain compression. Trends Rock Mech Geo SP-102:152–163

    Google Scholar 

  • Enoki M, Kishi T, Kohara S (1986) Determination of micro-cracking moment tensor of quasi-cleavage facet by AE source characterization. Prog Acoust Emiss III:763–770

    Google Scholar 

  • Eringen AC, Suhubi ES (1975) Elasodynamics, vol II. Academic Press, New York, Linear theory

    Google Scholar 

  • Eshelby JD (1973) Dislocation theory for geophysical applications. Phil Trans R Soc, London A274:331–338

    MATH  Google Scholar 

  • Hamstad MA, Gary J, O’Gallagher A (1996) Far-field AE waves by three-dimensional finite element modeling of pencil-lead breaks on a thick plate. J AE 14(2):103–114

    Google Scholar 

  • Hamstad MA, O’Gallagher A, Gary J (1999) Modeling of buried monopole and dipole sources of acoustic emission with a finite element technique. J AE 17(3–4):97–110

    Google Scholar 

  • Hsu NN, Hardy SC (1978) Experiments in acoustic emission waveform analysis for characterization of AE sources, sensors, and structures. Elast Waves Nondestruct Test Mater, AMD-Vol 29:85–106

    Google Scholar 

  • Johnson LR (1974) Green’s function for Lamb’s problem. Geopys J R Astr Soc 37:99–131

    Article  Google Scholar 

  • Kachanov M (1980) Continuum model of medium with cracks. J Eng Mech ASCE 106(EM5):1039–1051

    Google Scholar 

  • Kim KY, Sachse W (1984) Characterization of AE signals from indentation cracks in glass. Progress Acoust Emiss II:163–172

    Google Scholar 

  • Lamb H (1904) On the propagation of tremors over the surface of an elastic solid. Pilos Trans Roy Soc A203:1–42

    MATH  Google Scholar 

  • Muta T (1982) Micromechanics of defects in solids. Martinus Nijhoff Publishers, Den Hage

    Google Scholar 

  • Ohtsu M (1982) Source mechanism and waveform analysis of acoustic emission in concrete. J AE 2(1):103–112

    Google Scholar 

  • Ohtsu M, Ono K (1984) A Generalized theory of acoustic emission and Green’s functions in a half space. J AE 3(1):124–133

    Google Scholar 

  • Ohtsu M, Yuyama S, Imanaka T (1987) Theoretical treatment of acoustic emission sources in microfracturing due to disbonding. J Acoust Soc Am 82(2):506–512

    Article  Google Scholar 

  • Pao YH (1978) Theory of acoustic emission. elastic waves and nondestructive testing of materials, AMD-Vol 29:107–128

    Google Scholar 

  • Pao YH, Ceranoglu AN (1981) Propagation of elastic pulse and acoustic emission in a plate. J Appl Mech 48:125–147

    Article  Google Scholar 

  • Pekeris CL (1955) The Seismic surface pulse. Proc Nat Acad Sci 41:469–480

    Article  MathSciNet  Google Scholar 

  • Pekeris CL (1955) The Seismic buried pulse. Proc Nat Acad Sci 41:629–639

    Article  MathSciNet  Google Scholar 

  • Saito N, Takemoto M, Suzuki H, Ono K (1998) Advanced AE signal classification for studying the progression of fracture modes in loaded UD-GFRP. Prog Acous Emis IX:V-1–V-10

    Google Scholar 

  • Takemoto M (2000) Acoustic properties of composite materials and fracture behavior by the waveform simulation of AE signals. J Jpn Soc for NDI 49(9):592–600

    Google Scholar 

  • Wadley HNG, Scruby CB (1981) Acoustic emission source characterization. Adv Acoustic Emiss. Dunhart Publishers, Knoxville, 125–153

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayasu Ohtsu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohtsu, M. (2022). Source Mechanisms. In: Grosse, C.U., Ohtsu, M., Aggelis, D.G., Shiotani, T. (eds) Acoustic Emission Testing. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-67936-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67936-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67935-4

  • Online ISBN: 978-3-030-67936-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics