Skip to main content

AE in Polymeric Composites

  • Chapter
  • First Online:
Acoustic Emission Testing

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 2016 Accesses

Abstract

Polymeric composites comprise a wide range of materials consisting of continuous or discontinuous fibers, various particles, or combinations of these embedded in a polymer matrix. Beside technical polymer composites, bio-based composites with biopolymers or natural fibers, or natural polymer composites such as wood are finding increasing use in structural applications. The complex, multi-scale morphology yields distinctly different mechanisms generating AE under thermo-mechanical loads or environmental exposure. Storage tanks and pressure vessels made from fiber-reinforced composites were among the first components for which AE testing yielded reliable assessments of structural integrity. The empirical Felicity-ratio is important for quantitative predictions of structural damage and remaining service life. Recent advances in AE signal analysis now contribute to improved source location accuracy and to the unambiguous identification of the underlying microscopic signal source mechanisms. AE testing of infrastructure and components tends to move from periodic inspection to continuous structural health or condition monitoring. This also applies to infrastructure made from polymeric composites as well as to structures or parts in the transportation industry. AE implemented for process monitoring related to polymeric composites shows potential for development of AE-based process control. This chapter first reviews the mechanisms generating AE in polymeric composites, then discusses progress in AE signal analysis for source location and identification of mechanisms and presents selected examples of established AE applications from the micro- to the macro-scale. This includes prediction and quantification of damage in materials and structures, and closes with prospects for developments of AE condition monitoring and process control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (2019) ASTM E1316 standard terminology for nondestructive examinations 1–39

    Google Scholar 

  2. Orifici AC, Herszberg I, Thomson RS (2008) Review of methodologies for composite material modelling incorporating failure. Compos Struct 86:194–210. https://doi.org/10.1016/j.compstruct.2008.03.007

    Article  Google Scholar 

  3. Brunner AJ (2018) Fiber-reinforced polymer composites test specimen design for selected damage mechanisms. Proc Inst Mech Eng Part L J Mater Des Appl. https://doi.org/10.1177/1464420718800347

  4. Talreja R, Phan N (2019) Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage. Compos Struct 219:1–7. https://doi.org/10.1016/j.compstruct.2019.03.052

    Article  Google Scholar 

  5. Huang H, Talreja R (2005) Effects of void geometry on elastic properties of unidirectional fiber reinforced composites. Compos Sci Technol 65:1964–1981. https://doi.org/10.1016/j.compscitech.2005.02.019

    Article  Google Scholar 

  6. Mehan RL, Mullin JV (1971) Analysis of composite failure mechanisms using acoustic emissions. J Compos Mater 5:266–269. https://doi.org/10.1177/002199837100500213

    Article  Google Scholar 

  7. Anastassopoulos AA, Philippidis TP (1995) Clustering methodology for the evaluation of acoustic emission from composites. J Acoust Emiss 13:11–21

    Google Scholar 

  8. Philippidis T, Nikolaidis V, Anastassopoulos A (1998) Damage characterisation of C/C laminates using neural network techniques on AE signals. NDT&E Int 31:329–340

    Article  Google Scholar 

  9. Richardson JM, Elsley RK, Graham LJ (1984) Nonadaptive, semi-adaptive and adaptive approaches to signal processing problems in nondestructive evaluation. Pattern Recognit Lett 2:387–394. https://doi.org/10.1016/0167-8655(84)90005-9

    Article  Google Scholar 

  10. Vi-Tong E, Gaillard P (1987) An algorithm for non-supervised sequential classification of signals. Pattern Recognit Lett 5:307–313. https://doi.org/10.1016/0167-8655(87)90071-7

    Article  Google Scholar 

  11. Huguet S, Godin N, Gaertner R et al (2002) Use of acoustic emission to identify damage modes in glass fibre reinforced polyester. Compos Sci Technol 62:1433–1444

    Article  Google Scholar 

  12. Ramirez-Jimenez CR, Papadakis N, Reynolds N et al (2004) Identification of failure modes in glass/polypropylene composites by means of the primary frequency content of the acoustic emission event. Compos Sci Technol 64:1819–1827

    Article  Google Scholar 

  13. Marec A, Thomas J-H, Guerjouma R (2008) Damage characterization of polymer-based composite materials: multivariable analysis and wavelet transform for clustering acoustic emission data. Mech Syst Signal Process 22:1441–1464

    Article  Google Scholar 

  14. Sause MGR, Haider F, Horn S (2009) Quantification of metallic coating failure on carbon fiber reinforced plastics using acoustic emission. Surf Coatings Technol 204:300–308. https://doi.org/10.1016/j.surfcoat.2009.07.027

    Article  Google Scholar 

  15. Sause MGR, Horn S (2010) Simulation of acoustic emission in planar carbon fiber reinforced plastic specimens. J Nondestruct Eval 29:123–142. https://doi.org/10.1007/s10921-010-0071-7

    Article  Google Scholar 

  16. Sause MGR, Gribov A, Unwin AR, Horn S (2012) Pattern recognition approach to identify natural clusters of acoustic emission signals. Pattern Recognit Lett 33:17–23. https://doi.org/10.1016/j.patrec.2011.09.018

    Article  Google Scholar 

  17. Doan DD, Ramasso E, Placet V et al (2014) Application of an unsupervised pattern recognition approach for AE data originating from fatigue tests on CFRP. In: 31st conference of the European working group on acoustic emission. Dresden, Germany, pp 1–8

    Google Scholar 

  18. Anastassopoulos AA, Nikolaidis VN, Philippidis TP (1999) A comparative study of pattern recognition algorithms for classification of ultrasonic signals. Neural Comput Appl 8:53–66. https://doi.org/10.1007/s005210050007

    Article  Google Scholar 

  19. Yu P, Anastassopoulos V, Venetsanopoulos AN (1996) Pattern recognition based on morphological shape analysis and neural networks. Math Comput Simul 40:577–595. https://doi.org/10.1016/0378-4754(95)00008-9

    Article  Google Scholar 

  20. Baensch F, Sause MGR, Brunner AJ, Niemz P (2015) Damage evolution in wood—pattern recognition based on acoustic emission (AE) frequency spectra. Holzforschung 69:1–9. https://doi.org/10.1515/hf-2014-0072

    Article  Google Scholar 

  21. Kostopoulos V, Loutas T, Kontsos A et al (2003) On the identification of the failure mechanisms in oxide/oxide composites using acoustic emission. NDT E Int 36:571–580. https://doi.org/10.1016/S0963-8695(03)00068-9

    Article  Google Scholar 

  22. de Oliveira R, Frazão O, Santos JL, Marques AT (2004) Optic fibre sensor for real-time damage detection in smart composite. Comput Struct 82:1315–1321. https://doi.org/10.1016/j.compstruc.2004.03.028

    Article  Google Scholar 

  23. Bohse J, Chen J (2001) Acoustic emission examination of mode I, mode II and mixed-mode I/II interlaminar fracture of unidirectional fiber-reinforced polymers. J Acoust Emiss 19:1–10

    Google Scholar 

  24. Haselbach W, Lauke B (2003) Acoustic emission of debonding between fibre and matrix to evaluate local adhesion. Compos Sci Technol 63:2155–2162. https://doi.org/10.1016/S0266-3538(03)00193-3

    Article  Google Scholar 

  25. Li L, Lomov SV, Yan X, Carvelli V (2014) Cluster analysis of acoustic emission signals for 2D and 3D woven glass/epoxy composites. Compos Struct 116:286–299. https://doi.org/10.1016/j.compstruct.2014.05.023

    Article  Google Scholar 

  26. Li L, Lomov SV, Yan X (2015) Correlation of acoustic emission with optically observed damage in a glass/epoxy woven laminate under tensile loading. Compos Struct 123:45–53. https://doi.org/10.1016/j.compstruct.2014.12.029

    Article  Google Scholar 

  27. Sause MGR, Richler S (2015) Finite element modelling of cracks as acoustic emission sources. J Nondestruct Eval 34:4. https://doi.org/10.1007/s10921-015-0278-8

    Article  Google Scholar 

  28. Sause MGR (2018) On use of signal features for acoustic emission source identification in fibre-reinforced composites. In: 33rd European conference on acoustic emission testing. Senlis, France, pp 1–12

    Google Scholar 

  29. Prosser WH, Jackson KE, Kellas S et al (1995) Advanced waveform-based acoustic emission detection of matrix cracking in composites. Mater Eval 53:1052–1058

    Google Scholar 

  30. Scholey JJ, Wilcox PD, Wisnom MR, Friswell MI (2010) Quantitative experimental measurements of matrix cracking and delamination using acoustic emission. Compos Part A Appl Sci Manuf 41:612–623. https://doi.org/10.1016/j.compositesa.2010.01.008

    Article  Google Scholar 

  31. Giordano M, Calabro A, Esposito C et al (1998) An acoustic-emission characterization of the failure modes in polymer-composite materials. Compos Sci Technol 58:1923–1928

    Article  Google Scholar 

  32. Sause MGR (2016) In situ monitoring of fiber-reinforced composites. Springer International Publishing, Cham

    Book  Google Scholar 

  33. Potstada P, Rosini S, Mavrogordato M et al (2018) Cross-validation of single filament failure by acoustic emission and high-resolution synchrotron computed tomography. In: ECCM18—18th European conference on composite materials. Athens, Greece, pp 1–8

    Google Scholar 

  34. Ohtsu M, Ono K (1984) A generalized theory of acoustic emission and Green’s function in a half space. J Acoust Emiss 3:27–40

    Google Scholar 

  35. Aki K, Richards PG (1980) Quantitative seismology, theory and methods. University Science Books, Sausalito

    Google Scholar 

  36. Grosse CU, Ohtsu M (2008) Acoustic emission testing in engineering—basics and applications. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  37. Green ER (1995) Acoustic emission sources in a cross-ply laminated plate. Compos Eng 5:1453–1469

    Article  Google Scholar 

  38. Green ER (1998) Acoustic emission in composite laminates. J Nondestruct Eval 17:117–127

    Article  Google Scholar 

  39. Gorman MR, Prosser WH (1991) AE source orientation by plate wave analysis. J Acoust Emiss 9:283–288

    Google Scholar 

  40. Gorman MR (1991) Plate wave acoustic emission. J Acoust Soc Am 90:358. https://doi.org/10.1121/1.401258

    Article  Google Scholar 

  41. Gorman MR, Ziola SM (1991) Plate waves produced by transverse matrix cracking. Ultrasonics 29:245–251. https://doi.org/10.1016/0041-624X(91)90063-E

    Article  Google Scholar 

  42. Prosser WH (1991) The propagation characteristics of the plate modes of acoustic emission waves in thin aluminum plates and thin graphite/epoxy composite plates and tubes. Johns Hopkins University, Baltimore

    Google Scholar 

  43. Prosser WH (1996) Advanced AE techniques in composite materials research. J Acoust Emiss 14:1–11

    Google Scholar 

  44. Morscher GN (1999) Modal acoustic emission of damage accumulation in a woven SiC/SiC composite. Vacuum 59:687–697. https://doi.org/10.1016/S0266-3538(98)00121-3

    Article  Google Scholar 

  45. Surgeon M, Wevers M (1999) Modal analysis of acoustic emission signals from CFRP laminates. NDT E Int 32:311–322. https://doi.org/10.1016/S0963-8695(98)00077-2

    Article  Google Scholar 

  46. Prosser WH, Jackson KE, Kellas S et al (1997) Evaluation of damage in metal matrix composites by means of acoustic emission monitoring. NDT E Int 30:108. https://doi.org/10.1016/S0963-8695(97)85514-4

    Article  Google Scholar 

  47. Gorman MR (2011) Modal AE analysis of fracture and failure in composite materials, and the quality and life of high pressure composite pressure cylinders. J Acoust Emiss 29:1–28

    Google Scholar 

  48. Sause MGR, Horn SR (2010) Influence of specimen geometry on acoustic emission signals in fiber reinforced composites: FEM-simulations and experiments. In: 29th European conference on acoustic emission testing. Vienna, Austria, pp 1–8

    Google Scholar 

  49. Sause M (2010) Identification of failure mechanisms in hybrid materials utilizing pattern recognition techniques applied to acoustic emission signals. mbv-Verlag, Berlin

    Google Scholar 

  50. Sause MGR, Müller T, Horoschenkoff A, Horn S (2012) Quantification of failure mechanisms in mode-I loading of fiber reinforced plastics utilizing acoustic emission analysis. Compos Sci Technol 72:167–174. https://doi.org/10.1016/j.compscitech.2011.10.013

    Article  Google Scholar 

  51. Burks B, Kumosa M (2013) A modal acoustic emission signal classification scheme derived from finite element simulation. Int J Damage Mech 23:43–62. https://doi.org/10.1177/1056789513484620

    Article  Google Scholar 

  52. Cuadra J, Vanniamparambil PA, Servansky D et al (2015) Acoustic emission source modeling using a data-driven approach. J Sound Vib 341:222–236. https://doi.org/10.1016/j.jsv.2014.12.021

    Article  Google Scholar 

  53. Ritschel F, Sause MGR, Brunner AJ, Niemz P (2014) Acoustic Emission (AE) signal classification from tensile tests on plywood and layered wood. In: 31st conference of the European working group on acoustic emission. Dresden, Germany, pp 1–7

    Google Scholar 

  54. Vergeynst LL, Sause MGR, Steppe K (2014) Acoustic emission signal detection in drought-stressed trees: beyond counting hits. In: 31st conference of the European working group on acoustic emission. Dresden, Germany, pp 1–8

    Google Scholar 

  55. Njuhovic E, Bräu M, Wolff-Fabris F et al (2014) Identification of interface failure mechanisms of metallized glass fibre reinforced composites using acoustic emission analysis. Compos Part B Eng 66:443–452. https://doi.org/10.1016/j.compositesb.2014.06.018

    Article  Google Scholar 

  56. Priess T, Sause MG, Fischer D, Middendorf P (2015) Detection of delamination onset in laser-cut carbon fiber transverse crack tension specimens using acoustic emission. J Compos Mater 49:2639–2647. https://doi.org/10.1177/0021998314552003

    Article  Google Scholar 

  57. Sause MGR (2013) Acoustic emission signal propagation in damaged composite structures. J Acoust Emiss 31:1–18

    Google Scholar 

  58. Sause MGR, Kalafat S, Zelenyak A et al (2014) Acoustic emission source localization in bearing tests of fiber reinforced polymers by neural networks. In: 16th international conference on experimental mechanics. Cambridge, UK, pp 1–3

    Google Scholar 

  59. Bohse J (2000) Acoustic emission characteristics of micro-failure processes in polymer blends and composites. Compos Sci Technol 60:1213–1226

    Article  Google Scholar 

  60. Giordano M, Condelli L, Nicolais L (1999) Acoustic emission wave propagation in a viscoelastic plate. Compos Sci Technol 59:1735–1743

    Article  Google Scholar 

  61. Sause MGR, Horn S (2013) Quantification of the uncertainty of pattern recognition approaches applied to acoustic emission signals. J Nondestruct Eval 32:242–255. https://doi.org/10.1007/s10921-013-0177-9

    Article  Google Scholar 

  62. Pullin R, Baxter M, Eaton MMJ et al (2007) Novel acoustic emission source location. J Acoust Emiss 25:215–223

    Google Scholar 

  63. Eaton MJ, Pullin R, Holford KM, Featherston CA (2008) AE wave propagation and novel source location in composite plates. In: 28th European conference on acoustic emission testing. Berlin, Germany

    Google Scholar 

  64. Baxter MG, Pullin R, Holford KM, Evans SL (2007) Delta T source location for acoustic emission. Mech Syst Signal Process 21:1512–1520. https://doi.org/10.1016/j.ymssp.2006.05.003

    Article  Google Scholar 

  65. Eaton MJ, Pullin R, Holford KM (2012) Acoustic emission source location in composite materials using Delta T Mapping. Compos Part A Appl Sci Manuf 43:856–863. https://doi.org/10.1016/j.compositesa.2012.01.023

    Article  Google Scholar 

  66. Chlada M, Prevorovsky Z, Blahacek M (2010) Neural network AE source location apart from structure size and material. J Acoust Emiss 28:99–108

    Google Scholar 

  67. Blahacek M, Chlada M, Prevorovský Z, Prevorovsky Z (2006) Acoustic emission source location based on signal features. Adv Mater Res 13–14:77–82

    Article  Google Scholar 

  68. Kalafat S, Sause MGR (2015) Acoustic emission source localization by artificial neural networks. Struct Heal Monit 14:633–647. https://doi.org/10.1177/1475921715607408

    Article  Google Scholar 

  69. Sause MGR, Schmitt S, Hoeck B, Monden A (2019) Acoustic emission based prediction of local stress exposure. Compos Sci Technol 173:90–98. https://doi.org/10.1016/j.compscitech.2019.02.004

    Article  Google Scholar 

  70. Tensi HM (2004) The Kaiser effect and its scientific background. J Acoust Emiss 22:1–16

    Google Scholar 

  71. Ono K (2006) AE methodology for the evaluation of structural integrity. Adv Mater Res 13–14:17–22. https://doi.org/10.4028/www.scientific.net/AMR.13-14.17

    Article  Google Scholar 

  72. Fowler TJ (1977) Acoustic emission testing of fiber reinforced plastics. Proc Pap J Tech Counc ASCE 105(TC2):281–289

    Google Scholar 

  73. Bai X, Zhang D-M, Wang H et al (2018) A novel in situ stress measurement method based on acoustic emission Kaiser effect: a theoretical and experimental study. R Soc open Sci 5:181263. https://doi.org/10.1098/rsos.181263

    Article  Google Scholar 

  74. Kaiser J (1950) German patent 852 771-Kl.42 k Gr.3401 Materialprüfverfahren (filed 1950, granted 1952)

    Google Scholar 

  75. (2018) ASTM E1067/1067M standard practice for acoustic emission examination of fiberglass reinforced plastic resin (FRP) tanks/vessels

    Google Scholar 

  76. Fowler TJ, Blessing JA, Conlisk PJ, Swanson TL (1989) The MONPAC system. J Acoust Emiss 8:1–8

    Google Scholar 

  77. (2011) ASTM E2478 standard practice for determining damage-based design stress for glass fiber reinforced plastic (GFRP) materials using acoustic emission

    Google Scholar 

  78. (2013) ASTM E569/E569M standard practice for acoustic emission monitoring of structures during controlled stimulation

    Google Scholar 

  79. Chen Y, Su Y-M, Liu Y, Tia M (2014) The evaluation of moisture damage for CFRC pipes in conjunction with acoustic emission. In: Wu HF, Yu T-Y, Gyekenyesi AL, Shull PJ (eds) p 90631W

    Google Scholar 

  80. Baran IJ, Nowak MB, Chłopek JP, Konsztowicz KJ (2018) Acoustic emission from microcrack initiation in polymer matrix composites in short beam shear test. J Nondestruct Eval 37:7. https://doi.org/10.1007/s10921-017-0455-z

    Article  Google Scholar 

  81. Proverbio E (2011) Evaluation of deterioration in reinforced concrete structures by AE technique. Mater Corros 62:161–169. https://doi.org/10.1002/maco.201005735

    Article  Google Scholar 

  82. Ritschel F, Brunner AJ, Niemz P (2013) Nondestructive evaluation of damage accumulation in tensile test specimens made from solid wood and layered wood materials. Compos Struct 95:44–52. https://doi.org/10.1016/j.compstruct.2012.06.020

    Article  Google Scholar 

  83. Bashkov OV, Bryansky AA, Khon H, Panin S V (2018) Damage evaluation criteria based on acoustic emission parameters for polymer composite materials. In: AIP conference proceedings. American Institute of Physics Inc

    Google Scholar 

  84. Saeedifar M, Najafabadi MA, Zarouchas D et al (2018) Barely visible impact damage assessment in laminated composites using acoustic emission. Compos Part B Eng 152:180–192. https://doi.org/10.1016/j.compositesb.2018.07.016

    Article  Google Scholar 

  85. Downs KS, Hamstad MA (1998) Acoustic emission from depressurization to detect/evaluate significance of impact damage to graphite/epoxy pressure vessels. J Compos Mater 32:258–307. https://doi.org/10.1177/002199839803200304

    Article  Google Scholar 

  86. (2001) ISO 12716 Non-destructive testing—acoustic emission inspection—vocabulary

    Google Scholar 

  87. (2017) EN 1330-9 Non-destructive testing—terminology—part 9: terms used in acoustic emission testing

    Google Scholar 

  88. Ramirez G, Ziehl PH, Fowler TJ (2004) Nondestructive evaluation of FRP design criteria with primary consideration to fatigue loading. J Press Vessel Technol 126:216. https://doi.org/10.1115/1.1688371

    Article  Google Scholar 

  89. Ziehl PH, Fowler TJ (2003) Fiber reinforced vessel design with a damage criterion approach. Compos Struct 61:395–411. https://doi.org/10.1016/S0263-8223(03)00053-9

    Article  Google Scholar 

  90. Brunner AJ, Nordstrom R, Flüeler P (1995) A study of acoustic emission-rate behavior in glass fiber-reinforced plastics. J Acoust Emiss 13:67–77

    Google Scholar 

  91. Bohse J, Krietsch T, Chen JH, Brunner AJ (2000) Acoustic emission analysis and micro-mechanical interpretation of mode i fracture toughness tests on composite materials. Eur Struct Integr Soc 27:15–26. https://doi.org/10.1016/S1566-1369(00)80004-7

    Article  Google Scholar 

  92. (2001) ISO 15024 Fibre-reinforced plastic composites—determination of mode I interlaminar fracture toughness, G1c, for unidirectionally reinforced materials

    Google Scholar 

  93. (1999) CARP, The committee on acoustic emission from reinforced plastics (CARP), a division of the technical council of the American Society for Nondestructive Testing, lnc., Recommended practice for acoustic emission evaluation of fiber reinforced plastic (FRP)

    Google Scholar 

  94. (1989) ASME boiler and pressure vessel code, An American national standard, Section V, Nondestructive examination, Article 11 Acoustic emission examination of fiber-reinforced plastic vessels 149–176

    Google Scholar 

  95. Brunner AJ, Potstada P, Sause MGR (2019) Microscopic damage size in fiber-reinforced polymer-matrix composites: quantification approach via NDT-measurements. Procedia Struct Integr 17:146–153. https://doi.org/10.1016/j.prostr.2019.08.020

    Article  Google Scholar 

  96. (2010) ASTM E2661/E2616M standard practice for acoustic emission examination of plate-like and flat panel composite structures used in aerospace applications

    Google Scholar 

  97. Lavrov A (2005) Fracture-induced physical phenomena and memory effects in rocks: a review. Strain 41:135–149

    Article  Google Scholar 

  98. Jin Y, Qi Z, Chen M et al (2009) Time-sensitivity of the Kaiser effect of acoustic emission in limestone and its application to measurements of in-situ stress. Pet Sci 6:176–180. https://doi.org/10.1007/s12182-009-0028-6

    Article  Google Scholar 

  99. Fuentealba JF, Galleguillos R, Vargas-Hernández Y et al (2010) Stress memory lasting in composite materials. In: Physics procedia. Elsevier, pp 873–881

    Google Scholar 

  100. (2016) ISO 16148 gas cylinders—refillable seamless steel gas cylinders and tubes—acoustic emission examination (AT) and follow-up ultrasonic examination (UT) for periodic inspection and testing

    Google Scholar 

  101. Green AT, Lockman CS, Steele RK (1964) Acoustic verification of structural integrity of Polaris chambers. Mod Plast 41:137–139

    Google Scholar 

  102. Rotem A (1978) The estimation of residual strength of composites by acoustic emission. In: Proceedings of the 23rd national SAMPE symposium. Society for the Advancement of Material and Process Engineering, Azusa, California, pp 329–353

    Google Scholar 

  103. Masson JJ, Valentin D (1989) Proof testing of unidirectional GFRP using acoustic emission technique. In: Proceedings of third international symposium on acoustic emission from composite materials, AECM 3. American Society for Nondestructive Testing, Paris, France, pp 200–206

    Google Scholar 

  104. Talreja R (2014) Assessment of the fundamentals of failure theories for composite materials. Compos Sci Technol 105:190–201

    Article  Google Scholar 

  105. Spearing SM, Sinclair I (2016) The micro-mechanics of strength, durability and damage tolerance in composites: new insights from high resolution computed tomography. IOP Conf Ser Mater Sci Eng 139:012007. https://doi.org/10.1088/1757-899X/139/1/012007

    Article  Google Scholar 

  106. (2015) ISO 18249 Non-destructive testing—acoustic emission testing—specific methodology and general evaluation criteria for testing of fibre-reinforced polymers

    Google Scholar 

  107. Waller JM, Nichols CT, Wentzel DJ et al (2011) Use of modal acoustic emission to monitor damage progression in carbon fiber∕epoxy composites. In: AIP conference proceedings. San Diego, California, (USA), pp 919–926

    Google Scholar 

  108. Abraham ARA, Johnson KL, Nichols CT et al (2011) Use of statistical analysis of acoustic emission data on carbon-epoxy COPV materials-of-construction for enhanced felicity ratio onset determination—JSC-CN-26080

    Google Scholar 

  109. Sause MGR, Schmitt S, Kalafat S (2018) Failure load prediction for fiber-reinforced composites based on acoustic emission. Compos Sci Technol 164:24–33. https://doi.org/10.1016/j.compscitech.2018.04.033

    Article  Google Scholar 

  110. Hamstad MA (1986) A review: acoustic emission, a tool for composite-materials studies. Exp Mech 26:7–13. https://doi.org/10.1007/BF02319949

    Article  Google Scholar 

  111. Hamstad MA (1987) Acoustic emission in development of composite materials. In: NDT handbook, section 16: special acoustic emission applications. American Society for Nondestructive Testing, Columbus, Ohio, pp 561–568

    Google Scholar 

  112. Hamstad MA (1992) An examination of acoustic emission evaluation criteria for aerospace type fiber/polymer composites. In: Proceedings of the fourth international symposium on acoustic emission from composites. American Society for Nondestructive Testing, Seattle, Washington, pp 436–449

    Google Scholar 

  113. Balageas D, Fritzen C-P, Gemes A (2006) Structural health monitoring. ISTE, London, UK

    Book  Google Scholar 

  114. Ciang CC, Lee J-R, Bang H-J (2008) Structural health monitoring for a wind turbine system: a review of damage detection methods. Meas Sci Technol 19:122001. https://doi.org/10.1088/0957-0233/19/12/122001

    Article  Google Scholar 

  115. Ono K, Gallego A (2012) Research and applications of AE on advanced composites. J Acoust Emiss 30:180–229

    Google Scholar 

  116. Sause M, Hamstad M (2018) Acoustic emission analysis. In: Beaumont PWR, Zweben CH (eds) Comprehensive composite materials II. Elsevier, Oxford, pp 291–326

    Chapter  Google Scholar 

  117. Sause MGR (2016) In situ monitoring of fiber reinforced composites

    Google Scholar 

  118. Ohsawa T, Nakayama A, Miwa M, Hasegawa A (1978) Temperature dependence of critical fiber length for glass fiber-reinforced thermosetting resins. J Appl Polym Sci 22:3203–3212. https://doi.org/10.1002/app.1978.070221115

    Article  Google Scholar 

  119. Netravali AN, Topoleski LTT, Sachse WH, Phoenix SL (1989) An acoustic emission technique for measuring fiber fragment length distributions in the single-fiber- composite test. Compos Sci Technol 35:13–29. https://doi.org/10.1016/0266-3538(89)90068-7

    Article  Google Scholar 

  120. Nordstrom RA (1995) Acoustic emission characterization of microstructural failure in the single fiber fragmentation test. ETH Zurich

    Google Scholar 

  121. Cauich-Cupul JI, Pérez-Pacheco E, Valadez-González A, Herrera-Franco PJ (2011) Effect of moisture absorption on the micromechanical behavior of carbon fiber/epoxy matrix composites. J Mater Sci 46:6664–6672. https://doi.org/10.1007/s10853-011-5619-0

    Article  Google Scholar 

  122. Park JM, Shin PS, Wang ZJ et al (2016) The change in mechanical and interfacial properties of GF and CF reinforced epoxy composites after aging in NaCl solution. Compos Sci Technol 122:59–66. https://doi.org/10.1016/j.compscitech.2015.11.011

    Article  Google Scholar 

  123. Gade SO, Sause MGR (2017) Measurement and study of electromagnetic emission generated by tensile fracture of polymers and carbon fibres. J Nondestruct Eval 36:9. https://doi.org/10.1007/s10921-016-0386-0

    Article  Google Scholar 

  124. Harris D, Tetelman A, Darwish F (1972) Detection of fiber cracking by acoustic emission. In: Liptai RG, Harris DO, Tatro CA (eds) Acoustic emission. American Society for Testing Materials STP 505, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, pp 238–249

    Google Scholar 

  125. Carlsson L, Norrbom B (1983) Acoustic emission from graphite/epoxy composite laminates with special reference to delamination. J Mater Sci 18:2503–2509. https://doi.org/10.1007/BF00541857

    Article  Google Scholar 

  126. Soni SR, Kim RY (1985) Response of layered composites in the presence of progressive cracking. In: Proceedings of the 1985 SEM spring conference of experimental mechanics. Society for Experimental Mechanics, Brookfield Center, Connecticut, pp 712–717

    Google Scholar 

  127. Ghaffari S, Awerbuch J (1989) Monitoring initiation and growth of matrix splitting in a unidirectional graphite/epoxy composite. J Acoust Emiss 8:301–305

    Google Scholar 

  128. Violette MG, Schapery RA (2002) Time-dependent compressive strength of unidirectional viscoelastic composite materials. Mech Time-Dependent Mater 6:133–145. https://doi.org/10.1023/A:1015015023911

    Article  Google Scholar 

  129. Barnes JA, Kumosa M, Hull D (1987) Theoretical and experimental evaluation of the Iosipescu shear test. Compos Sci Technol. https://doi.org/10.1016/0266-3538(87)90024-8

    Article  Google Scholar 

  130. Fotouhi M, Pashmforoush F, Ahmadi M, Refahi Oskouei A (2011) Monitoring the initiation and growth of delamination in composite materials using acoustic emission under quasi-static three-point bending test. J Reinf Plast Compos 30:1481–1493. https://doi.org/10.1177/0731684411415140

    Article  Google Scholar 

  131. Plöckl M, Sause MGR, Scharringhausen J, Horn S (2012) Failure analysis of NOL-ring specimens by acoustic emission. In: 30th European conference on acoustic emission. Granada, Spain, pp 1–12

    Google Scholar 

  132. Hamstad MA (1982) Testing fiber composites with acoustic emission monitoring. J Acoust Emiss 1:151–164

    Google Scholar 

  133. Pottmeyer F, Schlegel O, Weidenmann KA, Merzkirch M (2018) Investigation of the damage evolution of metal inserts embedded in carbon fiber reinforced plastic by means of computed tomography and acoustic emission. Materwiss Werksttech 49:1245–1262. https://doi.org/10.1002/mawe.201800002

    Article  Google Scholar 

  134. Burzi Z, Zrili M, Sedmak S, Mitrakovi D (1989) Application of acoustic emission for monitoring fracture mechanics in composite materials. In: Proceedings of third international symposium on acoustic emission from composite materials, AECM 3. American Society for Nondestructive Testing, Paris, France, pp 422–431

    Google Scholar 

  135. Takehana M, Kimpara I (1972) Internal fracture and acoustic emission of fiberglass reinforced plastics. In: Mechanical behavior of materials. Volume V: composites, testing and evaluation. Society of Materials Science Japan, pp 156–167

    Google Scholar 

  136. Henneke II EG, Herakovich CT (1973) Acoustic emission investigation of composite reinforced metals. Report VPI E 73 27. Blacksburg, Virginia

    Google Scholar 

  137. Holt J, Worthington P (1981) A comparison of fatigue damage detection in carbon and glass fibre/epoxy composite materials by acoustic emission. Int J Fatigue 3:31–35. https://doi.org/10.1016/0142-1123(81)90046-3

    Article  Google Scholar 

  138. Arrington M, Harris B (1978) Some properties of mixed fibre cfrp. Composites 9:149–152. https://doi.org/10.1016/0010-4361(78)90339-7

    Article  Google Scholar 

  139. Block J (1989) AE inspection of carbon fiber reinforced structures for aerospace applications. In: Proceedings of third international symposium on acoustic emission from composite materials. American Society for Nondestructive Testing, Paris, France, pp 151–159

    Google Scholar 

  140. Buhmann KP (1975) Contribution to the nondestructive testing of first irreversible processes in glassfibre-reinforced plastics. PhD-Thesis, Techische Universität Hannover

    Google Scholar 

  141. Sato N, Kurauchi T, Sato S, Kamigaito O (1988) Reinforcing mechanism by small diameter fiber in short fiber composite. J Compos Mater 22:850–873. https://doi.org/10.1177/002199838802200905

    Article  Google Scholar 

  142. Green JE, Carlyle JD, Kukuchek P (1983) Impact-damaged graphite epoxy composites: impact testing and NDT evaluation. In: Preprint of the 38th annual conference, Reinforced Plastics/Composites Institute. Society of the Plastics Industry, Inc., New York, pp 1–6

    Google Scholar 

  143. Ochiai SI, Lew KQ, Green JE (1982) Instrumented impact testing of structural fiber reinforced plastic sheet materials and the simultaneous AE measurements. J Acoust Emiss 1:191–192

    Google Scholar 

  144. Maillet E, Baker C, Morscher GN et al (2015) Feasibility and limitations of damage identification in composite materials using acoustic emission. Compos Part A Appl Sci Manuf 75:77–83. https://doi.org/10.1016/j.compositesa.2015.05.003

    Article  Google Scholar 

  145. Allie C, Valentin D (1989) An acoustic emission monitoring of bending tests on a hydrothermal aged PA66 matrix/glass fibre composite. In: Proceedings of third international symposium on acoustic emission from composite materials, AECM 3. American Society for Nondestructive Testing, Paris, France, pp 137–143

    Google Scholar 

  146. Graham LJ (1978) Acoustic emission in composites using MPA. In: Proceedings of the ARPA/AFML review of progress in quantitative NDE. Rockwell International, AFML-TR-78-205, pp 285–292

    Google Scholar 

  147. Niesse JE (1980) Acoustic emission of degraded fiberglass reinforced plastics. In: Society of the plastics industry/committee on acoustic emission from reinforced plastics (CARP) meeting. Society of the Plastics Industry, Inc., Houston, Texas, USA

    Google Scholar 

  148. Kimpara I, Ohsawa I (1990) Evaluation of defects in CFRP laminates by acoustic emission. In: Yamaguchi K, Takahashi H, Niitsuma H (eds) Progress in acoustic emission V. Japanese Society for Non Destructive Inspection, Tokyo, Japan, pp 574–581

    Google Scholar 

  149. Dharan CKH (1987) Delamination fracture and acoustic emission in carbon, aramid and glass-epoxy composites. In: ICCM 7 ECCM: sixth international conference on composite materials and second European conference on composite materials. Elsevier Applied Sciences Publisher Ltd., Barking, England, pp 1405–1414

    Google Scholar 

  150. de Charentenay FX, Bethmont M, Benzeggagh M, Chrétien JF (1980) Delamination of glass fiber reinforced polyester, an acoustic emission study. In: Mechanical behaviour of materials. Elsevier, pp 241–251

    Google Scholar 

  151. de Charentenay FX, Benzeggagh M (1980) Fracture mechanics of mode I delamination in composite materials. In: Advances in composite materials. Elsevier, pp 186–197

    Google Scholar 

  152. Sause MGR (2016) Acoustic emission. In: Springer series in materials science, pp 131–359

    Google Scholar 

  153. Moosburger-Will J, Greisel M, Sause MGR et al (2014) Physical properties of partially cross-linked RTM6 epoxy resin. In: 16th European conference on composite materials, ECCM 2014, pp 22–26

    Google Scholar 

  154. Bohse J, Chen J, Brunner A (2000) Acoustic emission analysis and micro-mechanical interpretation of mode I fracture toughness tests on composite materials. Fract Polym Compos Adhes 27:15–26

    Google Scholar 

  155. Silversides I, Maslouhi A, LaPlante G (2013) Acoustic emission monitoring of interlaminar delamination onset in carbon fibre composites. Struct Heal Monit 12:126–140. https://doi.org/10.1177/1475921712469994

    Article  Google Scholar 

  156. Brunner AJ (2016) Correlation between acoustic emission signals and delaminations in carbon fiber-reinforced polymer-matrix composites: a new look at mode I fracture test data. In: 32nd European conference on acoustic emission

    Google Scholar 

  157. Lysak MV (1996) Development of the theory of acoustic emission by propagating cracks in terms of fracture mechanics. Eng Fract Mech 55:443–452. https://doi.org/10.1016/0013-7944(96)00026-4

    Article  Google Scholar 

  158. Brunner AJ (2018) Identification of damage mechanisms in fiber-reinforced polymer-matrix composites with acoustic emission and the challenge of assessing structural integrity and service-life. Constr Build Mater 173:629–637. https://doi.org/10.1016/j.conbuildmat.2018.04.084

    Article  Google Scholar 

  159. Moosburger-Will J, Sause MGR, Horny R et al (2015) Joining of carbon fiber reinforced polymer laminates by a novel partial cross-linking process. J Appl Polym Sci 132:42159. https://doi.org/10.1002/app.42159

    Article  Google Scholar 

  160. Shelby MD, Tai HJ, Jang BZ (1991) Vibration based non-destructive evaluation of polymer composites. Polym Eng Sci 31:47–55. https://doi.org/10.1002/pen.760310109

    Article  Google Scholar 

  161. Ryder JT, Wadin JR (1979) Acoustic emission monitoring of a quasi isotropic graphite/epoxy laminate under fatigue loading. In: Paper summaries: ASNT national spring conference. San Diego, California, (USA), pp 9–22

    Google Scholar 

  162. Fuwa M, Harris B, Bunsell AR (1975) Acoustic emission during cyclic loading of carbon-fibre-reinforced plastics. J Phys D Appl Phys 8:1460–1471. https://doi.org/10.1088/0022-3727/8/13/007

    Article  Google Scholar 

  163. Williams RS, Reifsnider KL (1977) Real time nondestructive evaluation of composite materials during fatigue loading. Mater Eval 35:50–54

    Google Scholar 

  164. Caprino G, Teti R, de Iorio I (2005) Predicting residual strength of pre-fatigued glass fibre-reinforced plastic laminates through acoustic emission monitoring. Compos Part B Eng 36:365–371. https://doi.org/10.1016/j.compositesb.2005.02.001

    Article  Google Scholar 

  165. Sarasini F, Tirillò J, Valente M et al (2013) Effect of basalt fiber hybridization on the impact behavior under low impact velocity of glass/basalt woven fabric/epoxy resin composites. Compos Part A Appl Sci Manuf 47:109–123. https://doi.org/10.1016/j.compositesa.2012.11.021

    Article  Google Scholar 

  166. Jefferson Andrew J, Arumugam V, Saravanakumar K et al (2015) Compression after impact strength of repaired GFRP composite laminates under repeated impact loading. Compos Struct 133:911–920. https://doi.org/10.1016/j.compstruct.2015.08.022

    Article  Google Scholar 

  167. Schoßig M, Bierögel C, Grellmann W (2017) Assessment of fracture behavior under impact loading with simultaneous recording of acoustic emission. Macromol Symp 373:1600126. https://doi.org/10.1002/masy.201600126

    Article  Google Scholar 

  168. De Simone ME, Andreades C, Hilmi AM et al (2019) Proof of concept for a smart composite orbital debris detector. Acta Astronaut 160:499–508. https://doi.org/10.1016/j.actaastro.2019.02.024

    Article  Google Scholar 

  169. Frieden J, Cugnoni J, Botsis J, Gmür T (2012) Low energy impact damage monitoring of composites using dynamic strain signals from FBG sensors—part I: impact detection and localization. Compos Struct 94:438–445. https://doi.org/10.1016/j.compstruct.2011.08.003

    Article  Google Scholar 

  170. Ponsot B, Valentin D, Bunsell AR (1985) An acoustic emission study of the role played by the matrix in controlling damage during the creep of composites. In: Bunsell AR, Lamicq P, Massiah A (eds) Proceedings of the first European conference on composite materials. France European Association for Composite Materials, Bordeaux, France, pp 172–178

    Google Scholar 

  171. Rotem A, Baruch J (1974) Determining the load-time history of fibre composite materials by acoustic emission. J Mater Sci 9:1789–1796. https://doi.org/10.1007/BF00541747

    Article  Google Scholar 

  172. Hamstad M, Chiao T (1975) Acoustic emission from stress rupture and fatigue of an organic fiber composite. In: Composite reliability. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, pp 191-201

    Google Scholar 

  173. Hamstad MA, Whittaker JW, Brosey WD (1992) Correlation of residual strength with acoustic emission from impact-damaged composite structures under constant biaxial load. J Compos Mater 26:2307–2328. https://doi.org/10.1177/002199839202601508

    Article  Google Scholar 

  174. Whittaker JW, Brosey WD, Hamstad MA (1989) Correlation of Felicity ratio and strength behavior of impact-damaged spherical composite test specimens. In: Proceedings of third international symposium on acoustic emission from composite materials, AECM 3. American Society for Nondestructive Testing, Paris, France, pp 160–167

    Google Scholar 

  175. Chou HY, Mouritz AP, Bannister MK, Bunsell AR (2015) Acoustic emission analysis of composite pressure vessels under constant and cyclic pressure. Compos Part A Appl Sci Manuf 70:111–120. https://doi.org/10.1016/j.compositesa.2014.11.027

    Article  Google Scholar 

  176. Gorman MR (1990) Burst prediction by acoustic emission in filament-wound pressure vessels. J Acoust Emiss 9:131–139

    Google Scholar 

  177. Hamstad MA, Chiao TT (1976) Structural integrity of fiber/epoxy vessels by acoustic emission: some experimental considerations. SAMPE Q 8:31–45

    Google Scholar 

  178. Hamstad MA, Chiao TT (1973) Acoustic emission produced during burst tests of filament-wound bottles. J Compos Mater 7:320–332. https://doi.org/10.1177/002199837300700304

    Article  Google Scholar 

  179. Hamstad MA (1982) Local characterization of fiber composites by acoustic emission. In: Proceedings of the critical review: techniques for the characterization of composites materials. AMMRC MS 82-3, Army Math and Mech. Res. Center, Watertown, MA, pp 221–229

    Google Scholar 

  180. Hamstad MA (1972) Acoustic emission from filament-wound pressure bottles. In: Proceedings of the 4th national SAMPE technical conference. Society for the Advancement of Material and Process Engineering, Palo Alto, California, pp 321–331

    Google Scholar 

  181. Hamstad MA, Chiao TT (1974) A physical mechanism for the early acoustic emission in an organic-fiber/epoxy pressure vessel. SAMPE Q 5

    Google Scholar 

  182. Hamstad MA (1982) Acceptance testing of graphite/epoxy composite parts using an acoustic emission monitoring technique. NDT Int 15:307–314. https://doi.org/10.1016/0308-9126(82)90067-0

    Article  Google Scholar 

  183. Lark RF, Moorhead PE (1978) Acoustic emission testing of composite vessels under sustained loading. Report NASA TM 78981. Cleveland

    Google Scholar 

  184. Ghorbel I, Valentin D, Yrieix MC, Grattier J (1991) The influence of matrix rheological properties on acoustic emission and damage accumulation in GRP tubes. Compos Sci Technol 41:221–236. https://doi.org/10.1016/0266-3538(91)90001-6

    Article  Google Scholar 

  185. Ramirez G (2012) Use of acoustic emission to evaluate residual strength in FRP pipes after impact damage. Res Nondestruct Eval 23:207–220. https://doi.org/10.1080/09349847.2012.674177

    Article  Google Scholar 

  186. Standard practice for acoustic emission examination of reinforced thermosetting resin pipe (RTRP). Philadelphia, Pennsylvania

    Google Scholar 

  187. Sato N, Kurauchi T (1997) Interpretation of acoustic emission signal from composite materials and its application to design of automotive composite components. Res Nondestruct Eval 9:119–136. https://doi.org/10.1007/PL00003893

    Article  Google Scholar 

  188. Rowland C, Butler L, Preston M (2004) Acoustic emission technique to assist the formula one designer in structural design. In: Proceedings BB 90-CD lecture 34th EWGAE. DGZfP-The German Society for Non-Destructive Testing, Berlin, Germany, pp 349–359

    Google Scholar 

  189. Sato N (1989) Acoustic emission technology for the development of composite materials in automobile industry. In: Proceedings of third international symposium on acoustic emission from composite materials, AECM 3. American Society for Nondestructive Testing, Paris, France, pp 42–51

    Google Scholar 

  190. Malpot A, Touchard F, Bergamo S (2015) Effect of relative humidity on mechanical properties of a woven thermoplastic composite for automotive application. Polym Test 48:160–168. https://doi.org/10.1016/j.polymertesting.2015.10.010

    Article  Google Scholar 

  191. Dia A, Dieng L, Gaillet L, Gning PB (2019) Damage detection of a hybrid composite laminate aluminum/glass under quasi-static and fatigue loadings by acoustic emission technique. Heliyon 5:e01414. https://doi.org/10.1016/j.heliyon.2019.e01414

    Article  Google Scholar 

  192. Dykes BC, Hardrath WT, Ulm DS (1992) An acoustic emission pre-failure warning system for composite structural tests. AECM-4, Int Symp Acoust Emiss from Compos Mater 4th, Seattle, WA, July 27–31, 1992, Proc (A93-52551 22-38), pp 175–181 93:175–181

    Google Scholar 

  193. Chang CMJ, Scarton HA (1986) Acoustic emission during local buckling of thin-walled epoxy tubes. In: Proceedings of second international symposium on acoustic emission from reinforced composites, pp 141–149

    Google Scholar 

  194. Nokes JP (2000) Acoustic emission testing of the delta graphite/epoxy rocket motor case (GEM). In: Health monitoring for graphite/epoxy motor cases aerospace report no. TR-2000(1222)-1 The Aerospace Corporation. El Segundo, California, pp 39–44

    Google Scholar 

  195. Raju AA, Prusty B (2012) Acoustic emission techniques for failure characterisation in composite top-hat stiffeners. J Reinf Plast Compos 31:495–516. https://doi.org/10.1177/0731684412437986

    Article  Google Scholar 

  196. Crivelli D, Guagliano M, Eaton M et al (2015) Localisation and identification of fatigue matrix cracking and delamination in a carbon fibre panel by acoustic emission. Compos Part B Eng 74:1–12. https://doi.org/10.1016/j.compositesb.2014.12.032

    Article  Google Scholar 

  197. Dutton AG, Blanch MJ, Vionis P, et al (2001) Acoustic emission condition monitoring of wing turbine rotor blades: laboratory certification testing to large scale in-service deployment. In: Proceedings of the 2001 European wind energy conference. WindEurope, Copenhagen, Denmark

    Google Scholar 

  198. Anastassopoulos AA, Kouroussis DA, Nikolaidis VN et al (2002) Structural integrity evaluation of wind turbine blades using pattern recognition analysis on acoustic emission data. In: Proceedings of the 25th European conference on acoustic emission testing. Prague, Czech Republic

    Google Scholar 

  199. Galappaththi UIK, De Silva AKM, Macdonald M, Adewale OR (2012) Review of inspection and quality control techniques for composite wind turbine blades. Insight—Non-Destruct Test Cond Monit 54:82–85. https://doi.org/10.1784/insi.2012.54.2.82

    Article  Google Scholar 

  200. Wu J, Lan C, Xian G, Li H (2018) Recognition of damage pattern and evolution in CFRP cable with a novel bonding anchorage by acoustic emission. Smart Struct Syst 21:421–433. https://doi.org/10.12989/sss.2018.21.4.421

  201. Hutton PH (1975) Investigate feasibility of utilizing acoustic emission methods to evaluate the integrity of a prototype ADAPTS oil storage container. Report No. CG D 37 76. Battelle Northwest, Richland, Washington

    Google Scholar 

  202. Kimura Y, Kuratani K, Takei M (1986) A method for assessing manhole cover deterioration by use of acoustic emission. In: Proceedings of second international symposium on acoustic emission from reinforced composites. Society of the Plastics Industry, Inc., Montreal, Canada, pp 197–201

    Google Scholar 

  203. Ching SO, Ngui WK, Kar Hoou H et al (2019) Review of underground storage tank condition monitoring techniques. MATEC Web Conf 255:02009. https://doi.org/10.1051/matecconf/201925502009

    Article  Google Scholar 

  204. Sohaib M, Islam M, Kim J et al (2019) Leakage detection of a spherical water storage tank in a chemical industry using acoustic emissions. Appl Sci 9:196. https://doi.org/10.3390/app9010196

    Article  Google Scholar 

  205. Hamstad MA (1980) Acoustic emission for quality control of Kevlar 49 filament-wound composites. In: Proceedings of the 12th national SAMPE technical conference. Society for the Advancement of Material and Process Engineering, Seattle, Washington, pp 380–393

    Google Scholar 

  206. Teti R, Visconti IC, Ilio AD (1982) Fabrication cycle influence on the acoustic emission response of GFRP composites. In: 4th international conference on composite materials. Japan Society for Composite Materials, Tokyo, Japan, pp 1499–1506

    Google Scholar 

  207. Teti R (1986) Acoustic emission testing of glass fiber reinforced plastic components. J Acoust Emiss 5:156–160

    Google Scholar 

  208. Hinton YL, Shuford RJ, Houghton WW (1982) Acoustic emission during cure of fiber reinforced composites. In: Proceedings of the critical review; techniques for the characterization of composite materials. Report AMMRC MS 82 3. Army Materials and Mechanics Research Center, Watertown, Massachusetts, pp 25–36

    Google Scholar 

  209. Houghton WW, Shuford RJ, Sprouse JF (1979) Acoustic emission as an aid for investigating composite manufacturing processes. In: New horizons—materials and processes for the eighties. National SAMPE technical conference series, vol 11. Society for the Advancement of Material and Process Engineering, pp 131–150

    Google Scholar 

  210. Pawar OA, Gaikhe YS, Tewari A et al (2015) Analysis of hole quality in drilling GLARE fiber metal laminates. Compos Struct 123:350–365. https://doi.org/10.1016/j.compstruct.2014.12.056

    Article  Google Scholar 

  211. Ravishankar S, Murthy CR (2000) Application of acoustic emission in drilling of composite laminates. NDT E Int 33:429–435. https://doi.org/10.1016/S0963-8695(00)00014-1

    Article  Google Scholar 

  212. Arul S, Vijayaraghavan L, Malhotra SK (2007) Online monitoring of acoustic emission for quality control in drilling of polymeric composites. J Mater Process Technol 185:184–190. https://doi.org/10.1016/j.jmatprotec.2006.03.114

    Article  Google Scholar 

  213. Hloch S, Valíček J, Kozak D et al (2013) Analysis of acoustic emission emerging during hydroabrasive cutting and options for indirect quality control. Int J Adv Manuf Technol 66:45–58. https://doi.org/10.1007/s00170-012-4304-z

    Article  Google Scholar 

  214. Nishino M, Harada Y, Suzuki T, Niino H (2012) Acoustic damage detection in laser-cut CFRP composite materials. In: Laser applications in microelectronic and optoelectronic manufacturing (LAMOM) XVII. SPIE, p 82431C

    Google Scholar 

  215. Bansal A, Kumosa M (1997) Mechanical evaluation of axially loaded composite insulators with crimped end-fittings. J Compos Mater 31:2074–2104. https://doi.org/10.1177/002199839703102004

    Article  Google Scholar 

  216. Bansal A, Kumosa M (1998) Analysis of double edge-cracked iosipescu specimens under biaxial loads. Eng Fract Mech 59:89–100. https://doi.org/10.1016/S0013-7944(97)00063-5

  217. Fan J, Liang X, Yin Y et al (2002) Application of acoustic emission technology on structure design and quality control of composite insulators. In: Proceedings of the 6th international conference on properties and applications of dielectric materials (Cat. No.00CH36347). IEEE, pp 358–361

    Google Scholar 

  218. Wertheim R, Ben-Hanan U, Ihlenfeldt S et al (2012) Acoustic emission for controlling drill position in fiber-reinforced plastic and metal stacks. CIRP Ann—Manuf Technol 61:75–78. https://doi.org/10.1016/j.cirp.2012.03.003

    Article  Google Scholar 

  219. Tittmann BR, Yen CE (2008) Acoustic emission technique for monitoring the pyrolysis of composites for process control. Ultrasonics 48:621–630. https://doi.org/10.1016/j.ultras.2007.08.007

    Article  Google Scholar 

  220. Lu QY, Wong CH (2018) Additive manufacturing process monitoring and control by non-destructive testing techniques: challenges and in-process monitoring. Virtual Phys Prototyp 13:39–48

    Article  Google Scholar 

  221. Holroyd TJ (2005) The application of AE in condition monitoring. Insight—Non-Destructive Test Cond Monit 47:481–485. https://doi.org/10.1784/insi.2005.47.8.481

    Article  Google Scholar 

  222. Khan SM, Atamturktur S, Chowdhury M, Rahman M (2016) Integration of structural health monitoring and intelligent transportation systems for bridge condition assessment: current status and future direction. IEEE Trans Intell Transp Syst 17:2107–2122. https://doi.org/10.1109/TITS.2016.2520499

    Article  Google Scholar 

  223. Gostautas RS, Ramirez G, Peterman RJ, Meggers D (2005) Acoustic emission monitoring and analysis of glass fiber-reinforced composites bridge decks. J Bridg Eng 10:713–721. https://doi.org/10.1061/(ASCE)1084-0702(2005)10:6(713)

    Article  Google Scholar 

  224. Dong Y, Ansari F (2011) Service life estimation and extension of civil engineering structures. Serv Life Estim Ext Civ Eng Struct 193–222. https://doi.org/10.1533/9780857090928.2.193

  225. Boyce WC, Hawmann MW (2004) Structural monitoring system helicopter rotor components 1–5

    Google Scholar 

  226. Wevers M, Lambrighs K (2008) Applications of acoustic emission for SHM: a review. In: Encyclopedia of structural health monitoring. Wiley, Ltd., Chichester, UK

    Google Scholar 

  227. Fu T, Liu Y, Li Q, Leng J (2009) Fiber optic acoustic emission sensor and its applications in the structural health monitoring of CFRP materials. Opt Lasers Eng 47:1056–1062. https://doi.org/10.1016/j.optlaseng.2009.03.011

    Article  Google Scholar 

  228. Barbezat M, Brunner AJ, Huber C, Flüeler P (2007) Integrated active fiber composite elements: characterization for acoustic emission and acousto-ultrasonics. J Intell Mater Syst Struct 18:515–525. https://doi.org/10.1177/1045389X06067140

    Article  Google Scholar 

  229. Lindgren EA (2016) SHM reliability and implementation—a personal military aviation perspective, p 200001

    Google Scholar 

  230. Melnykowycz M, Kornmann X, Huber C et al (2006) Performance of integrated active fiber composites in fiber reinforced epoxy laminates. Smart Mater Struct 15:204–212. https://doi.org/10.1088/0964-1726/15/1/050

    Article  Google Scholar 

  231. Sans D, Stutz S, Renart J et al (2012) Crack tip identification with long FBG sensors in mixed-mode delamination. Compos Struct 94:2879–2887. https://doi.org/10.1016/j.compstruct.2012.03.032

    Article  Google Scholar 

  232. Tuloup C, Harizi W, Aboura Z et al (2019) On the use of in-situ piezoelectric sensors for the manufacturing and structural health monitoring of polymer-matrix composites: a literature review. Compos Struct 215:127–149

    Article  Google Scholar 

  233. Boller C, Mahapatra DR, Sridaran Venkat R et al (2017) Integration of non-destructive evaluation-based ultrasonic simulation: a means for simulation in structural health monitoring. Struct Heal Monit 16:611–629. https://doi.org/10.1177/1475921717724614

    Article  Google Scholar 

  234. Schulze R, Streit P, Fischer T et al (2014) Fiber-reinforced composite structures with embedded piezoelectric sensors. In: Proceedings of IEEE sensors. Institute of Electrical and Electronics Engineers Inc., pp 1563–1566

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus G. R. Sause .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sause, M.G.R., Brunner, A.J. (2022). AE in Polymeric Composites. In: Grosse, C.U., Ohtsu, M., Aggelis, D.G., Shiotani, T. (eds) Acoustic Emission Testing. Springer Tracts in Civil Engineering . Springer, Cham. https://doi.org/10.1007/978-3-030-67936-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67936-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67935-4

  • Online ISBN: 978-3-030-67936-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics