Abstract
Mendeleev’s first periodic table (1869) included just five rare earth elements. This article traces the discovery and isolation of the rare earths—scandium, yttrium and the lanthanides—a process that extended until 1947, as well as the efforts to locate them in the periodic system. The striking similarity of the chemistry of the metals has made their isolation in a pure state a challenge. Developments in their chemistry extending up to the present day are considered, including extending the range of their coordination numbers, an increasing number of compounds in unusual oxidation states, and most recently lanthanide-containing enzymes, raising questions about their role in living systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Thyssen P, Binnemans K (2011) Accommodation of the rare earths in the periodic table: A historical analysis. Handb Phys Chem Earths 41:1–93
Gadolin J (1794) Undersökning af en svart tung Stenart ifrån Ytterby Stenbrott i Roslagen. Kongl Vetenskaps Acad Nya Handlingar 15:137–155
Pyykkö P, Orama O (1996) What did Johan Gadolin actually do? In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 1–12
Hisinger W, Berzelius J (1804) Cerium, ein neues Metall aus einer schwedischen Steinart. Bastnas Tungstein genannt, Neues allg J Chem 2:397–418
Klaproth MH (1804) Chemische Untersuchung des Ochroïts. Neues allg J Chem 2:303–316
Klaproth MH (1804, printed in 1807) Analyse chimique de l’ochroïte. Mémoires de l’Académie royale des Sciences et Belles-Lettres: 155–164
Vauquelin LN (1804) Essais sur l’ocroïte de M. Klaproth, lus à l’Institut le 12 geminal an 12. Ann Chim 50:140–143
Trofast J (1996) The discovery of cerium—A fascinating story. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 13–36
Tansjö L (1996) Carl Gustav Mosander and his research on rare earths. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 37–54
Mosander CG (1842) Något om Cer och Lanthan. Skand Naturf Forhandl 3:387–398
Mosander CG (1844) On the new metals, lanthanium and didymium, which are associated with cerium; and on erbium and terbium, new metals associated with yttria. Report of the thirteenth meeting of the British Association for the Advancement of Science held at Cork in August 1843, pp 25–32
Szabadvary F, Evans CH (1996) The fifty years following Mosander. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 55–66
Delafontaine MA (1876) Le didyme de la cérite est probablement un mélange de plusieurs corps. CR Hebd Séances Acad 87:634–635
Auer von Welsbach C (1885) Die Zerlegung des Didyms in seine Elemente. Monatsh Chem 6:477–491
Lecoq de Boisbaudran PE (1879) Nouvelles raies spectrales observées dans les substances extradites de la samarskite. CR Hebd Séances Acad Sci 88:322–324
Lecoq de Boisbaudran PE (1879) Recherches sur le samarium, radical d’une terre nouvelle extradite de la samarskite. CR Hebd Séances Acad Sci 89:212–214
Demarcay E (1901) Sur un nouvel élément, l’europium. CR Hebd Séances Acad Sci 132:1484–1486
Marignac J-C (1880) Sur les terres de la samarskite. Arch Sci Phys Nat 64:97–107
Lecoq de Boisbaudran PE (1886) Le Yα der M. de Marignac est définitivement nomme gadolinium. CR Hebd Séances Acad Sci 102:902
Marignac MC (1878) Sur l’ytterbine, nouvelle terre contenue dans la gadolinite. CR Hebd Séances Acad Sci 87:578–581
Cleve PT (1879) Om tillvaron af tvänne nya grundämnen i erbinjorden. Öfvers Kongl Vetensk-Akad Förh 36(7):11–14
Cleve PT (1879) Sur deux nouveaux éléments dans l’erbine. CR Hebd Séances Acad 89:478–481
Lecoq de Boisbaudran PE (1886) Sur le dysprosium. CR Hebd Séances Acad 102:1005–1006
Nilson LF (1879) Om scandium, en ny jordmetall. Öfvers Kongl Vetensk-Akad Förh 36(3), 47–51; published in translation (1879) Über Scandium, ein Neues Erdmetall. Ber Dtsch Chem Ges 12:554–557
Cleve PT (1879) Om Skandium. Öfvers Kongl Vetensk-Akad Förh 36(7):3–10
Vickery RC (1960) The chemistry of yttrium and scandium. Pergamon, Oxford, p 4
Nilson LF (1880) Om ytterbiums atomvigt. Öfvers Kongl Vetensk-Akad Förh 37(6):45–52
Kragh H (1996) Elements 70, 71 and 72: Discoveries and controversies. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 67–89
Baumgartner E, E (1996) Carl Auer von Welsbach a pioneer in the industrial application of rare earths. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, pp 113–130
Auer von Welsbach C (1907) Die Zerlegung des Ytterbiums in seine Elemente. Sitzungsberichte der mathematisch-naturwissenschaftliche Klasse der kaiserlichen Akademie der Wissenschaften Abteilung IIb 116:1425–1469
Urbain G (1907) Un nouvel element: le lutécium, résultant du dédoublement de l’ytterbium de Marignac. CR Hebd Séances Acad 145:759–762
Cotton SA, Hart FA (1975) The heavy transition elements. Macmillan, Basingstoke, p 188
Emsley J (2001) Nature’s building blocks—An A-Z guide to the elements. OUP, Oxford
James C (1911) Thulium I. J Am Chem Soc 33:1332–1344
Mendeleev D (1869) Ueber die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente. Zeitschrift für Chemie 12:405–406
Mendeleev D (1870) Über die Stellung des Ceriums im System der Elemente. Bull Cl Phys-Math Acad Imp Sci St Petersb 16:45–51
Mendelejeff D (1872) Die periodische Gesetzmässigkeit der chemischen Elemente. Ann Chem Pharm Suppl 8:133–229
Bassett H (1892) A tabular expression of the periodic relations of the elements. Chem News 65(3–4):19
Brauner B (1902) Über die Stellung der Elemente der seltenen Erden im periodischen System von Mendelejeff. Z Anorg Allg Chem 32:1–30
Cleve P-T (1882) Note préliminaire sur le didyme. CR Hebd Séances Acad 94:1528–1530
Brauner B (1882) Sur le didyme. CR Hebd Séances Acad 94:1718–1719
Adunka R, Orna MV (2018) Carl Auer von Welsbach: Chemist, inventor, entrepreneur. Springer, Cham
Werner A (1905) Beitrag zum Aufbau des periodischen systems. Chem Ber 38:914–921
Moseley HGJ (1913) The high-frequency spectra of the elements. Phil Mag 26:1024–1034
Moseley HGJ (1914) The high-frequency spectra of the elements. Part II. Phil Mag 27:703–713
Fontani M, Costa M, Orna MV (2014) The lost elements: The periodic table’s shadow side. OUP, New York
Scerri E (2020) The periodic table: Its story and its significance, 2nd edn. OUP, New York
Prandtl W, Grimm A (1924) Über die Aufsuchung des Elementes Nr. 61. Z Anorg Allgem Chem 136:283–288
Noddack I (1934) Das Periodische System der Elemente und seine Lücken. Angew Chem 47:301–305
Harris JA, Hopkins BS (1926) Observations on the rare earths XXIII. Element no. 61. Part one. Concentration and isolation in impure state. J Am Chem Soc 48:1585–1594
Harris JA, Yntema LF, Hopkins BS (1926) Observations on the rare earths XXIII. Element No. 61. Part two. X-ray analysis. J Am Chem Soc 48:1594–1598
Prandtl W (1926) Auf der Suche nach dem Element Nr. 61. Angew Chem 39:897–898
Prandtl W, Grimm A (1926) Auf der Suche nach dem Element Nr. 61 (II). Angew Chem 39:1333
Rolla L, Fernandes L (1926) Über das Element der Atomnummer 61. Z Anorg Allg Chem 157:371–381
Rolla L, Fernandes L (1927) Über Das Element der Atomnummer 61 (Florentium). Z Anorg Allg Chem 160:190–192
Rolla L, Fernandes L (1927) Florentium. Z Anorg Allg Chem 163:40–42
Rolla L, Fernandes L (1928) Florentium II. Z Anorg Allg Chem 169:319–320
Mattauch J (1934) Zur Systematik der Isotopen. Z Physik 91:361–371
Pool ML, Quill LL (1938) Radioactivity induced in the rare earth elements by fast neutrons. Phys Rev 53:437
Marinsky JA, Glendenin LE, Coryell CD (1947) The chemical identification of radioisotopes of neodymium and of element 61. J Am Chem Soc 69:2781–2785
Marinsky JA (1996) The search for element 61. In: Evans CH (ed) Episodes from the history of the rare earths. Kluwer, Dordrecht, p 101
Atreep M, Kuroda PK (1968) Promethium in pitchblende. J Inorg Nucl Chem 30:699–703
Sidgwick NV (1950) The chemical elements and their compounds, vol I. OUP, Oxford, p 456
Jantsch G, Wigdorow S (1911) Zur Kenntnis der Doppelnitrate der seltenen Erden. 1. Mitteilung. Über die Doppelnitrate der seltenen Erden mit den Alkalielementen. Z Anorg Allgem Chem 69:221–231
Jantsch G (1912) Zur Kenntnis der Doppelnitrate der seltenen Erden. II. Mitteilung. Z Anorg Allgem Chem 76:303–323
Callow RJ (1966) The rare earth industry. Pergamon, Oxford, pp 41–58
Yost DM, Russell H, Garner CS (1947) The rare-earth elements and their compounds. Wiley, New York, p 43
Spedding FH, Voigt AF, Gladrow EM, Sleight NR (1947) The separation of rare earths by ion exchange. I. Cerium and yttrium. J Am Chem Soc 69:2777–2781
Moeller T (1963) The chemistry of the lanthanides. Reinhold, New York, pp 80–91
Bünzli J-CG, McGill I (2018) Rare earths. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim
Warf JC (1949) Extraction of cerium(IV) nitrate by butyl phosphate. J Am Chem Soc 71:3257–3258
Peppard DF, Mason GW, Maier JL, Driscoll WL (1957) Fractional extraction of the lanthanides as their di-alkyl orthophosphates. J Inorg Nucl Chem 4:334–343
Cotton SA (2006) Lanthanide and actinide chemistry. Wiley, Chichester p 36
Cotton SA (1991) Lanthanides and actinides. Macmillan, Basingstoke, p 51
Martell AE, Smith RM (1974) Critical stability constants, vols. 1–6. Plenum, New York
Bünzli J-CG (2014) Lanthanides. Kirk-Othmer encyclopedia of chemical technology. Chichester, Wiley
Goonan TG (2011) Rare earth elements-end use and recyclability. U.S. Geological Survey, Reston, VA, p 5
Atwood DA (2012) Sustainability of rare earth resources. In: Atwood DA (ed) The rare earth elements: Fundamentals and applications. Wiley, Chichester, pp 21–25
Binnemans K, Jones PT, Van Acker K, Blanpain B, Mishra B, Apelian D (2013) Rare-earth economics: The balance problem. JOM 65:846–848
Xie Y, Hou Z, Goldfarb RJ, Guo X, Wang L (2016) Rare earth element deposits in China. Rev Econ Geol 18:115–136
Yang XJ, Lin A, Li X-L, Wu Y, Zhou W, Chen Z (2013) China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ Dev 8:131–136
Kato Y, Fujinaga K, Nakamura K, Takaya Y, Kitamura K, Ohta J, Toda R, Nakashima T, Iwamori H (2011) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat Geosci 4:535–539
Takaya Y et al (2018) The tremendous potential of deep-sea mud as a source of rare-earth elements. Sci Rep 8:5763
Pimentel GC, Spratley RD (1971) Understanding chemistry. Holden-Day, San Francisco, p 862
Kim Y-C, Oishi J (1979) On the valence changes of lanthanide elements in compounds and the enthalpies of formation and stabilities of their dihalides. J Less Common Met 65:199–210
Smith DW (1986) A simple empirical analysis of the enthalpies of formation of lanthanide halides and oxides. J Chem Educ 63:228–231
Smith DW (1990) Inorganic substances. CUP, Cambridge
Platt AWG (2012) Variable valency. In: Atwood DA (ed) The rare earth elements: Fundamentals and applications. Wiley, Chichester, pp 35–42
Sroor FMA, Edelmann FT (2012) Tetravalent chemistry: Inorganic. In: Atwood DA (ed) The rare earth elements: Fundamentals and applications. Wiley, Chichester, pp 313–320
So Y-M, Leung W-H (2017) Recent advances in the coordination chemistry of cerium(IV) complexes. Coord Chem Rev 340:172–197
Anwander R, Dolg M, Edelmann FT (2017) The difficult search for organocerium(iv) compounds. Chem Soc Rev 46:6697–6709
Persson I (2010) Hydrated metal ions in aqueous solution: How regular are their structures? Pure Appl Chem 82:1901–1917
Demars TJ, Bera MK, Seifert S, Antonio MR, Ellis RJ (2015) Revisiting the solution structure of ceric ammonium nitrate. Angew Chem Int Ed 54:7534–7538
Urbain G, Budischovsky E (1897) Recherches sur les sables monazités. CR Hebd Séances Acad 124:618–621
Meyer RJ, Jacoby R (1901) Die Doppelnitrate des vierwertigen Ceriums und des Thoriums. Z Anorg Allg Chem 27:359–389
Imamoto T (1996) Lanthanides in organic synthesis. Academic Press, London, pp 119–123
Klemm W, Henkel P (1934) Messungen an zwei‐ und vierwertigen Verbindungen der seltenen Erden. V. Certetrafluorid. Z Anorg Allg Chem 220:180–182
Caughlan CN, Mazhar-ul-Haque FA, Hart FA, VanNice R (1971) Crystal and molecular structure of tetranitratobis(triphenylphosphine oxide)cerium(IV). Inorg Chem 10:115–122
Champion MJD, Levason W, Reid G (2014) Synthesis and structure of [CeF4(Me2SO)2]—A rare neutral ligand complex of a lanthanide tetrafluoride. J Fluorine Chem 157:19–21
Bradley DC, Chatterjee AK, Wardlaw W (1956) Structural chemistry of the alkoxides. Part VI. Primary alkoxides of quadrivalent cerium and thorium. J Chem Soc: 2260–2264
Friedrich J, Schneider D, Bock L, Maichle-Mössmer C, Anwander R (2017) Cerium(IV) neopentoxide complexes. Inorg Chem 56:8114–8127
Crozier AR, Bienfait AM, Maichle-Mössmer C, Törnroos KW, Anwander R (2013) A homoleptic tetravalent cerium silylamide. Chem Comm 49:87–89
Williams UJ, Carroll PJ, Schelter EJ (2014) Synthesis, bonding, and reactivity of a cerium(IV) fluoride complex. Inorg Chem 53:6338–6345
Morton C, Alcock NW, Lees MR, Munslow IJ, Sanders CJ, Scott P (1999) Stabilization of cerium(IV) in the presence of an iodide ligand: Remarkable effects of Lewis acidity on valence state. J Am Chem Soc 121:11255–11256
Hitchcock PB, Hulkes AG, Lappert MF, Li Z (2004) Cerium(III) dialkyl dithiocarbamates from [Ce{N(SiMe3)2}3] and tetraalkylthiuram disulfides, and [Ce(κ2-S2CNEt2)4] from the CeIII precursor; TbIII and NdIII analogues. J Chem Soc Dalton Trans 129–136
Willauer AR, Palumbo CT, Fadaei-Tirani F, Zivkovic I, Douair I, Maron L, Mazzanti M (2020) Accessing the +IV oxidation state in molecular complexes of praseodymium. J Am Chem Soc 142:5538–5542
Palumbo CT, Zivkovic I, Scopelliti R, Mazzanti M (2019) Molecular complex of Tb in the +4 oxidation state. J Am Chem Soc 141:9827–9831
Rice NT, Popov IA, Russo DR, Bacsa J, Batista ER, Yang P, Telser J, La Pierre HS (2019) Design, isolation, and spectroscopic analysis of a tetravalent terbium complex. J Am Chem Soc 141:13222–13233
Garcia J, Allen MJ (2012) Developments in the coordination chemistry of europium(II). Eur J Inorg Chem: 4550–4563
Moreau G, Helm L, Purans J, Merbach AE (2002) Structural investigation of the aqueous Eu2+ ion: comparison with Sr2+ using the XAFS technique. J Phys Chem A 106:3034–3043
Garcia J, Kuda-Wedagedara ANW, Allen MJ (2012) Physical properties of Eu2+‐containing cryptates as contrast agents for ultrahigh‐field magnetic resonance imaging. Eur J Inorg Chem: 2135–2140
Matignon C, Cazes EC (1906) Le chlorure samareux. Ann Chim Phys 8:417–426
Meyer G (2012) The divalent state in solid rare earth metal halides. In: Atwood DA (ed) The rare earth elements: Fundamentals and applications. Wiley, Chichester, pp 161–173
Tilley TD, Zalkin A, Andersen RA, Templeton DH (1981) Divalent lanthanide chemistry. Preparation of some four- and six-coordinate bis[(trimethylsilyl)amido] complexes of europium(II). Crystal structure of bis[bis(trimethylsilyl)amido]bis(1,2-dimethoxyethane)europium(II). Inorg Chem 20:551–554
Ortu F, Mills DP (2019) Low coordinate rare earth and actinide complexes. In: Bünzli J-C G, Pecharsky VK (eds) Handbook on the physics and chemistry of rare earths 55:1–87
Evans WJ, Allen NT, Ziller JW (2000) The availability of dysprosium diiodide as a powerful reducing agent in organic synthesis: Reactivity studies and structural analysis of DyI2((DME)3 and its naphthalene reduction product. J Am Chem Soc 122:11749–11750
Bochkarev MN (2004) Molecular compounds of “new” divalent lanthanides. Coord Chem Rev 248:835–851
Hitchcock PB, Lappert MF, Maron L, Protchenko AV (2008) Lanthanum does form stable molecular compounds in the +2 oxidation state. Angew Chem Int Ed 47:1488–1491
MacDonald MR, Ziller JW, Evans WJ (2011) Synthesis of a crystalline molecular complex of Y2+, [(18-crown-6)K][(C5H4SiMe3)3Y]. J Am Chem Soc 133:15914–15917
Evans WJ (2016) Tutorial on the role of cyclopentadienyl ligands in the discovery of molecular complexes of the rare-earth and actinide metals in new oxidation states. Organometallics 35:3088–3100
Wyckoff RWG, Posnjak E (1921) The crystal structure of ammonium chloroplatinate. J Am Chem Soc 43:2292–2309
Moeller T (1967) Coordination chemistry of the lanthanide elements—One hundred years of development and understanding. In: Kaufmann GB (ed) Werner centennial. Adv Chem Ser 62:306–317
Ketelaar JAA (1937) The crystal structure of the ethyl sulphates of the rare earths and yttrium. Physica 4:619–630
Helmholz L (1939) The Crystal structure of neodymium bromate enneahydrate, Nd(Br O3)3·9H2O. J Am Chem Soc 61:1544–1550
Hart FA, Laming FP (1965) Lanthanide complexes—II: Complexes of 1:10-phenanthroline with lanthanide acetates and nitrates. J Inorg Nucl Chem 27:1605–1610
Kepert DL, Semenova LI, Sobolev AN, White AH (1996) Structural systematics of rare earth complexes. IX. Tris(nitrato-O, O′)(bidentate-N, N′)lutetium(III), N, N′-bidentate equals 2,2′-bipyridine or 1,10-phenanthroline. Austral J Chem 49:1005–1008
Zalkin A, Forrester JD, Templeton DH (1963) Crystal structure of cerium magnesium nitrate hydrate. J Chem Phys 39:2881–2891
Hoard JL, Lee B, Lind MD (1965) On the structure-dependent behavior of ethylenediaminetetraacetato complexes of the rare earth Ln3+ ions. J Am Chem Soc 87:1612–1613
Janicki R, Mondry A (2014) A new approach to determination of hydration equilibria constants for the case of [Er(EDTA)(H2O)n]− complexes. Phys Chem Chem Phys 16:26823–26831
Binnemans K (2005) Rare-earth beta-diketonates. In: Gschneidner KA, Bünzli, J-C G, Pecharsky VK (eds), Handbook on the physics and chemistry of rare earths 35:107–272
Frost GH, Hart FA, Heath C, Hursthouse MB (1969) The crystal structure of tris-(2,2′,6′,2″-terpyridyl)europium(III) perchlorate. J Chem Soc Chem Comm 1421–1422
Ravnsbæk DB, Filinchuk Y, Černý R, Ley MB, Haase D, Jakobsen HJ, Skibsted J, Jensen TR (2010) Thermal polymorphism and decomposition of Y(BH4)3. Inorg Chem 49:3801–3809
Daly SR, Kim DY, Girolami GS (2012) Lanthanide N, N-dimethylaminodiboranates: Highly volatile precursors for the deposition of lanthanide-containing thin films. Inorg Chem 51:7050–7065
Bradley DC, Ghotra JS, Hart FA (1973) Low co-ordination numbers in lanthanide and actinide compounds. Part I. The preparation and characterization of tris{bis(trimethylsilyl)-amido}lanthanides. J Chem Soc Dalton Trans: 1021–1023
Ghotra, JS, Hursthouse MB, Welch AJ (1973) Three-co-ordinate scandium(III) and europium(III); crystal and molecular structures of their trishexamethyldisilylamides. J Chem Soc Chem Comm: 669–670
Brady ED, Clark DL, Gordon JC, Hay PJ, Keogh DW, Poli R, Scott BL, Watkin JG (2003) Tris(bis(trimethylsilyl)amido)samarium: X-ray structure and DFT study. Inorg Chem 42:6682–6690
Perrin L, Maron L, Eisenstein O, Lappert MF (2003) γ Agostic C-H or β agostic Si–C bonds in La{CH(SiMe3)2}3? A DFT study of the role of the ligand. New J Chem 27:121–127
Avent AG, Caro CF, Hitchcock PB, Lappert MF, Li Z, Wei XH (2004) Synthetic and structural experiments on yttrium, cerium and magnesium trimethylsilylmethyls and their reaction products with nitriles; with a note on two cerium β-diketiminates. J Chem Soc Dalton Trans 1567–1577
Goodwin CAP, Joslin KC, Lockyer SJ, Formanuik A, Morris GA, Ortu F, Vitorica-Yrezabal IJ, Mills DP (2015) Homoleptic trigonal planar lanthanide complexes stabilized by superbulky silylamide ligands. Organometallics 34:2314–2325
Eaborn C, Hitchcock PB, Izod K, Smith JD (1994) A monomeric solvent-free bent lanthanide dialkyl and a lanthanide analog of a grignard reagent. Crystal structures of Yb{C(SiMe3)3}2 and [Yb{C(SiMe3)3}I.OEt2]. J Am Chem Soc 116:12071–12072
Hitchcock PB, Khvostov AV, Lappert MF (2002) Synthesis and structures of crystalline bis(trimethylsilyl)methanidocomplexes of potassium, calcium and ytterbium. J Organomet Chem 663:263–268
Chilton NF, Goodwin CAP, Mills DP, Winpenny REP (2015) The first near-linear bis(amide) f-block complex: A blueprint for a high temperature single molecule magnet. J Chem Soc Chem Comm 51:101–103
Cotton SA, Hart FA, Hursthouse MB, Welch AJ (1972) Preparation and molecular structure of a σ-bonded lanthanide phenyl. J Chem Soc Chem Comm 1225–1226
Bradley DC, Ghotra JS, Hart FA, Hursthouse MB, Raithby PR (1977) Low co-ordination numbers in lanthanoid and actinoid compounds. Part 2. Syntheses, properties, and crystal and molecular structures of triphenylphosphine oxide and peroxo-derivatives of [bis(trimethylsilyl)-amido]lanthanoids. J Chem Soc Dalton Trans 1166–1172
Hubbard CR, Quicksall CO, Jacobsen RA (1974) A neutron-diffraction study of holmium ethylsulfate enneahydrate by the white-radiation method. Acta Crystallogr B 30:2613–2619
Chatterjee A, Maslen EN, Watson KJ (1988) The effect of the lanthanoid contraction on the nonaaqualanthanoid(III) tris(trifluoromethanesulfonates). Acta Crystallogr B 44:381–386
Kurisaki T, Yamaguchi T, Wakita H (1993) Effect of temperature on the structure of hydrated lanthanide(III) ions in crystals and in solution. J Alloys Compd 192:293–295
Lim KC, Skelton BW, White AH (2000) Structural systematics of rare earth complexes. XXII. (‘Maximally’) hydrated rare earth iodides. Austral J Chem 53:867–873
Glaser J, Johanson G (1981) Crystal structures of the isomorphous perchlorate hexahydrates of some trivalent metal ions (M = La, Tb, Er, Tl). Acta Chem Scand 35A:639–644
Kepert CJ, Skelton BW, White AH (1994) Structural systematics of rare earth complexes. VII. Crystal structure of bis(2,2′/6′,2-terpyridinium) octaaquaterbium(III) heptachloride hydrate. Austral J Chem 47:391–396
Huang C, Bian Z (2010) Introduction. In: Huang C (ed) Rare earth coordination chemistry: Fundamentals and applications. Wiley, Singapore, p 18
Feng X-Z, Guo A-L, Xu Y-T, Li X-F, Sun P-N (1987) The packing saturation rule and the packing centre rule: Structural characteristics in lanthanide coordination compounds. Polyhedron 6:1041–1048
Marçalo J, Pires de Matos A (1989) A new definition of coordination number and its use in lanthanide and actinide coordination and organometallic chemistry. Polyhedron 8:2431–2437
Goldschmidt VM, Barth T, Lunde G (1925) Geochemische Verteilungsgesetze der Elemente. Die Lanthaniden-Kontraktion und ihre Konsequenzen, Skrifter Norske Videnskaps-Akademi i. Oslo, Norway, Part V Isomorphie und Polymorphie der Sesquioxyde
D’Angelo P, Spezia R (2012) Hydration of lanthanoids(III) and actinoids(III): An experimental/theoretical saga. Chem Eur J 18:11162–11178
Cotton SA (2005) Establishing co-ordination numbers for the lanthanides. Compt Rend Chimie 8:129–145
Cotton SA, Raithby PR (2017) Systematics and surprises in lanthanide coordination chemistry. Coord Chem Revs 340:220–231
Cotton SA, Franckevicius V, Mahon MF, Ooi LL, Raithby PR, Teat SJ (2006) Structures of 2,4,6-tri-α-pyridyl-1,3,5-triazine complexes of the lanthanoid nitrates: A study in the lanthanoid contraction. Polyhedron 25:1057–1068
Hamilton DC (1965) Position of lanthanum in the periodic table. Amer J Phys 33:637–640
Merz H, Ulmer K (1967) Position of lanthanum and lutetium in the periodic table. Phys Lett 26A:6–7
Jensen WB (1982) The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table. J Chem Educ 59:634–636
Lavelle L (2008) Lanthanum (La) and actinium (Ac) should remain in the d-block. J Chem Educ 85:1482–1483
Jensen WB (2009) Misapplying the periodic law. J Chem Educ 86:1186
Lavelle L (2009) Response to “misapplying the periodic law”. J Chem Educ 86:1187
Scerri ER (2009) Which elements belong in group 3? J Chem Educ 86:1188
Jensen WB (2015) The positions of lanthanum (actinium) and lutetium (lawrencium) in the periodic table: An update. Found Chem 17:23–31
Alvarez S (2020) The transition from 4f to 5d elements from the structural point of view. Cryst Eng Comm. https://doi.org/10.1039/d0ce00029a
Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767
Curnock E, Levason W, Light ME, Luthra SK, McRobbie G, Monzittu FM, Reid G, Williams RN (2018) Group 3 metal trihalide complexes with neutral N-donor ligands—exploring their affinity towards fluoride. J Chem Soc, Dalton Trans 47:6059–6068
Bambirra S, Meetsma A, Hessen B (2006) Lanthanum tribenzyl complexes as convenient starting materials for organolanthanum chemistry. Organometallics 25:3454–3462
Meyer N, Roesky PW, Bambirra S, Meetsma A, Hessen B, Saliu K, Takats J (2008) Synthesis and structures of scandium and lutetium benzyl complexes. Organometallics 27:1501–1505
Saliu KO, Takats J, McDonald R (2018) Crystal structure of tribenzylbis(tetrahydrofuran-κO)lutetium(III). Acta Crystallogr E Crystallogr Commun 74:88–90
Cotton SA, Harrowfield JM, Raithby PR (2020), manuscript in preparation
Hibi Y, Asai K, Arafuka H, Hamajima M, Iwama T, Kawai K (2011) Molecular structure of La3+-induced methanol dehydrogenase-like protein in methylobacterium radiotolerans. J Biosci Bioeng 111:547–549
Pol A, Barends TRM, Dietl A, Khadem AF, Eygensteyn J, Jetten MSM, Op den Camp HJM (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264
Cotruvo JA, Featherston EA, Mattocks JA, Ho JV, Larmore TN (2018) Lanmodulin: A highly selective lanthanide-binding protein from a lanthanide-utilizing bacterium. J Am Chem Soc 140:15056–15061
Deblonde GJ-P, Mattocks JA, Park DM, Reed DW, Cotruvo JA, Jiao Y (2020) Selective and efficient biomacromolecular extraction of rare-earth elements using lanmodulin. Inorg Chem 59:11855–11867
Cotruvo JA (2019) The chemistry of lanthanides in biology: Recent discoveries, emerging principles, and technological applications. ACS Cent Sci 5:1496–1506
Daumann LJ (2019) Essential and ubiquitous: The emergence of lanthanide metallobiochemistry. Angew Chem Int Ed 58:12795–12802
Acknowledgements
The author is grateful to the editors, especially Professor Gregory Girolami, for a great deal of assistance during the production of this chapter.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Cotton, S.A. (2021). The Rare Earths, a Challenge to Mendeleev, No Less Today. In: Giunta, C.J., Mainz, V.V., Girolami, G.S. (eds) 150 Years of the Periodic Table. Perspectives on the History of Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-67910-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-030-67910-1_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67909-5
Online ISBN: 978-3-030-67910-1
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)