Skip to main content

Discovery of Three Elements Predicted by Mendeleev’s Table: Gallium, Scandium, and Germanium

  • Chapter
  • First Online:
150 Years of the Periodic Table

Part of the book series: Perspectives on the History of Chemistry ((PHC))

  • 1277 Accesses

Abstract

The 1869 publication of Dmitri Mendeleev’s systematic table contained lacunae left by the author to signal the presumed existence of not-yet-discovered simple bodies. Three of the missing elements were discovered within a span of time from 1875 to 1886: gallium, scandium, and germanium. Aside from the great psychological impact, they served to decisively change the attitude of the scientific world with respect to the validity of the periodic system of the elements. Although Paul-Émile Lecoq de Boisbaudran, Lars Fredrik Nilson, and Clemens Alexander Winkler are the acknowledged discoverers of these three elements, respectively, questions arise about the nature of discovery itself. Can their discovery be attributed to Mendeleev, who speculated on and predicted their existence? Must discovery be attributed to those who only detected the elements, or to those who isolated the oxides of the elements, or to those who isolated the free elements themselves? Arguments can be made for recognizing all of these cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For more on Meyer, see Gisela Boeck’s Chap. 8 in this volume.

  2. 2.

    Behind Mendeleev’s right shoulder is shown the final version of his periodic table dated 17 February 1869. The inscription in Hungarian directly under his name reads “the creator of the periodic table.”

  3. 3.

    Present authors’ italics. Freund’s use of the word “system” is entirely consonant with Mendeleev’s own idea. As Van Tiggelen, et al. point out, there are thousands of periodic tables, but only one periodic system from which Mendeleev inferred his law [16].

  4. 4.

    Mendeleev explained the use of the prefix eka thus: ‘In order not to introduce new names for the expected elements, I shall call them by the name of the nearest lowest analogue from among odd- or even-numbered elements of the same group, adding Sanskrit numerals to the name of the element.

  5. 5.

    See Vera Mainz’s Chap. 14 in this volume, “Mary Elvira Weeks and Discovery of the Elements.”

  6. 6.

    Lecoq de Boisbaudran had some general theories about the relationship between spectra (both luminescence and spark) and the atomic weights of the elements. To test them, he made a detailed study of the spectra of 35 elements and published them in a single volume in 1874 [29].

  7. 7.

    All translations are the work of the authors.

  8. 8.

    “Blende” can mean any of several minerals, mainly metallic sulfides. In the context of this experiment, sphalerite, or zinc sulfide, often called zinc blende, is meant.

  9. 9.

    The details of Nilson’s life and work are drawn mainly from this source.

  10. 10.

    Rare earth elements are often defined as elements 57 through 71, the lanthanides, but strictly speaking, yttrium and scandium should also be included due to their similar chemical behavior and placement in group 3 of the periodic table. See Chap. 11 of this volume for more on the rare earth elements. The definition of an “earth” evolved over the course of the eighteenth century from a generalized mineral lacking taste and solubility in water to, by the end of the century, a difficultly reducible metal oxide. These oxides often take the suffix -ia; for example, erbium oxide is called erbia, thorium oxide is thoria, etc.

  11. 11.

    Scandium has since been shown to have a hexagonal close packed structure.

  12. 12.

    Sefström and Gahn discovered vanadium and manganese, respectively.

  13. 13.

    Didymium was still considered an element in the 1860s.

  14. 14.

    The chemical formula of argyrodite is Ag8GeS6. A first, incomplete, description of this mineral was given in 1831 by CGA von Weissenbach (1797–1846) and in 1832 by JFA Breithaupt. See ref. [59] for the original citations.

  15. 15.

    For a detailed description of the exact chemical reactions involved in germanium’s discovery, please see ref. [62].

  16. 16.

    Meyer, Mendeleev, and Winkler corresponded voluminously on this point before they all realized germanium’s true identity.

  17. 17.

    In German, silicon is “silicium,” so Winkler’s choice of a name ending in -ium for the new nonmetal was not out of line with some other nonmetals like helium, selenium and tellurium.

  18. 18.

    It is interesting to note that in this publication Lecoq used the symbol “Gr” for germanium.

  19. 19.

    This work is now available in a modern rendition in a collection edited by William Jensen [91].

References

  1. UNESCO. International Year of the Periodic Table of Chemical Elements 2019 (2009) https://en.unesco.org/commemorations/iypt2019. Accessed 27 Apr 2019

  2. Meyer JL (1864) Die modernen Theorien der Chemie und ihre Bedeutung für die chemische Mechanik. Verlag von Maruschke & Berendt, Breslau

    Google Scholar 

  3. Boeck G (2019) Julius Lothar (von) Meyer (1830–1895) and the periodic system. Substantia 3(2) suppl 4:13–25. https://doi.org/10.13128/substantia-503

  4. Meyer JL (1870) Die Natur der chemischen Elemente als Function ihrer Atomgewichte. Annalen Chem Pharm, sup. 7:354–364

    Google Scholar 

  5. Mendeleev DI (1869) Sootnoshenie svoistv s atomnym vesom elementov [The correlation of properties with the atomic weights of the elements]. Zh Russ Fiz-Khim Ova 1:60–77

    Google Scholar 

  6. Moseley HGJ (1913) The high frequency spectra of the elements. Philos Mag 26:1025–1034

    Article  Google Scholar 

  7. Moseley HGJ (1914) High frequency spectra of the elements, Part II. Philos Mag 27:703–713

    Article  CAS  Google Scholar 

  8. van den Broek A (1911) The number of possible elements and Mendeléeff’s “cubic” periodic system. Nature 87:78

    Article  Google Scholar 

  9. Scerri E (2015) The discovery of the periodic table as a case of simultaneous discovery. Phil Trans R Soc A 373:20140172. http://dx.doi.org/10.1098/rsta.2014.0172. Accessed 19 Feb 2020

  10. Rabinovich D (2019) International Year of the Periodic Table (IYPT): A Midyear Philatelic Report. Philatelia Chim Phys 40(2):56–65

    Google Scholar 

  11. Ball P (2019) “Whose periodic table is it anyway? Reproduced by permission from the royal society of chemistry. https://www.chemistryworld.com/opinion/whose-periodic-table-is-it-anyway/3009968.article. Accessed 1 Mar 2020

  12. Gordin MD (2007) D. I. Mendeleev: reflecting on his death in 1907. Angew Chem Int Ed 48:2758–2765

    Article  CAS  Google Scholar 

  13. Mendelejeff D (1869) Ueber die Beziehungen der Eigenschaften zu den Atomgewichten der Elemente [On the relationship of the properties of the elements to their atomic weights]. Z Chem 12:405–406

    Google Scholar 

  14. Giunta C. Elements and atoms: Chapter 12. Mendeleev’s first periodic table. http://web.lemoyne.edu/~GIUNTA/EA/MENDELEEVann.HTML. Accessed 17 Feb 2019

  15. Freund I (1904) The study of chemical composition: an account of its method and historical development. Cambridge University Press, Cambridge, UK, p 474. As quoted in Opitz DL (2019) Cupcakes and chemical composition: Ida Freund’s legacy. In: Lykknes A, Van Tiggelen B (eds) Women in their element: selected women’s contributions to the periodic system. World Scientific Publishing, Singapore, pp 457–467 at 463

    Google Scholar 

  16. Van Tiggelen B, Lykknes A, Martinez-Moreno L (2019) The periodic system, a history of shaping and sharing. Substantia 3(2), suppl 4:9–12

    Google Scholar 

  17. Mendeléeff D (1889) The periodic law of the chemical elements. J Chem Soc (London) 55:634–656

    Article  CAS  Google Scholar 

  18. Stewart PJ (2019) Mendeleev’s predictions: success and failure. Found Chem 21:3–9

    Article  CAS  Google Scholar 

  19. Gordin MD (2018) A well-ordered thing: Dmitri Mendeleev and the shadow of the periodic table, rev edn. Princeton University Press, Princeton, NJ, p 202

    Book  Google Scholar 

  20. Niaz M, Rodríguez MA, Brito A (2004) An appraisal of Mendeleev’s contribution to the development of the periodic table. Stud Hist Philos Sci A 35(2):271–282

    Article  Google Scholar 

  21. Weeks ME (1932) The discovery of the elements XV. Some elements predicted by Mendeleeff. J Chem Educ 9(9):1605–1619

    Google Scholar 

  22. Weeks ME (1968) Discovery of the elements, 7th edn., completely revised and new material added by Leicester HM. Journal of Chemical Education, Easton, PA, pp 643–665

    Google Scholar 

  23. Marché M (1958) Souvenir d’un grand chimiste cognaçais. Bulletin de l’Institut d’Histoire et d’Archéologie de Cognac et du cognaçais 1(3):1–19

    Google Scholar 

  24. Fontani M, Costa M, Orna MV (2014) The lost elements: the periodic table’s shadow side. Oxford University Press, New York, pp 211–213

    Book  Google Scholar 

  25. Wagner GH, Gitzen GH (1952) Gallium. J Chem Educ 29:162–167

    Article  CAS  Google Scholar 

  26. Lecoq de Boisbaudran P-É (1869) Sur la constitution des spectres lumineux. C R Séances Acad Sci 69:445–451, 606–615, 657–664, 694–700

    Google Scholar 

  27. Kirchhoff G, Bunsen R (1860) Chemische Analyse durch Spectralbeobachtungen. Annalen Phys Chem 110:161–189

    Article  Google Scholar 

  28. Lecoq de Boisbaudran P-É (1877) On the new metal—gallium. Chem News 35(907):148–150

    Google Scholar 

  29. Lecoq de Boisbaudran P-É (1874) Spectres lumineux: spectres prismatiques et en longueurs d’ondes destinés aux recherches de chimie. Gauthier-Villars, Paris. (Reprinted as a Classic Reprint by Forgotten Books, London, in 2018)

    Google Scholar 

  30. Lecoq de Boisbaudran P-É (1875) Caractères chimiques et spectroscopiques d’un nouveau métal, le Gallium, découvert dans une blende de la mine de Pierrefitte, vallée d’Argelès (Pyrénées). C R Séances Acad Sci 81:493–495

    Google Scholar 

  31. Lecoq de Boisbaudran P-É (1876) Sur le spectre du gallium. C R Séances Acad Sci 82:168

    Google Scholar 

  32. Lecoq de Boisbaudran P-É (1876) Nouvelles recherches sur le gallium. C R Séances Acad Sci 82:1036–1039

    Google Scholar 

  33. Lecoq de Boisbaudran P-É, Jungfleisch É-C (1878) Extraction du gallium. C R Séances Acad Sci 86:475–478

    Google Scholar 

  34. Mendeleev D (1875) Remarques à propos de la découverte du gallium. C R Séances Acad Sci 81:969–972

    Google Scholar 

  35. Lecoq de Boisbaudran PÉ (1875) Sur quelques propriétés du gallium. C R Séances Acad Sci 81:1100–1105

    Google Scholar 

  36. Gordin MD (2004) The short happy life of Mendeleev’s periodic law. In: Rouvray DH, King RB (eds) The periodic table: into the 21st century. Research Studies Press Ltd, Baldock, Hertfordshire, England, pp 40–90 at 62

    Google Scholar 

  37. Strathern P (2001) Mendeleyev’s dream. St. Martin’s Press, New York, p 291

    Google Scholar 

  38. Lecoq de Boisbaudran P-É (1876) Sur les propriétés physiques du gallium. C R Séances Acad Sci 83:611–613

    Google Scholar 

  39. van Spronsen JW (1969) The periodic system of chemical elements: a history of the first hundred years. Elsevier, Amsterdam, p 221

    Google Scholar 

  40. Ramsay W (1913) Obituary notice: Paul Émile (dit François) Lecoq de Boisbaudran. J Chem Soc Trans 103:742–744

    Article  Google Scholar 

  41. Bruker Metaljet D2 Plus. https://tinyurl.com/y8jmca9g. Accessed 27 May 2020

  42. Excillum Metaljet X-ray sources. https://www.excillum.com/products/metaljet/. Accessed 27 May 2020

  43. Pettersson O (1900) Nilson memorial lecture. J Chem Soc Trans 77:1277–1294

    Article  CAS  Google Scholar 

  44. Scheerer Th (1840) Ueber den Euxenit, eine neue Mineralspecies. Ann Phys (Berlin) 50:149–153

    Article  Google Scholar 

  45. Berlin NJ (1852) Ueber die Thorerde und die Donarerde. Ann Phys (Berlin) 85:554–557

    Google Scholar 

  46. Bahr JF, Bunsen RW (1866) Über Erbinerde und Yttererde. Ann Chem Pharm 137 (neue Reihe 61, Januar):1–33 at pp 26–28

    Google Scholar 

  47. Galissard de Marignac JC (1878) Sur l’ytterbine, nouvelle terre contenue dans la gadolinite. C R Séances Acad Sci 87:578–581

    Google Scholar 

  48. Nilson LF (1879) Sur l’ytterbine, terre nouvelle de M. Marignac. C R Séances Acad Sci 88:642-645

    Google Scholar 

  49. Nilson LF (1879) Om scandium, en ny jordmetall. Öfvers Kongl Vetensk-Akad Förh 36(3):47–51

    Google Scholar 

  50. Nilson LF (1879) Sur le scandium, élément nouveau. C R Séances Acad Sci 88:645–648

    Google Scholar 

  51. Cleve PT (1879) Sur le scandium. C R Séances Acad Sci 89:419–422

    Google Scholar 

  52. Cleve PT (1879) Om Skandium. Öfvers Kongl Vetensk-Akad Förh 36(7):3–10

    Google Scholar 

  53. Goldschmidt VM (1922) Kristallographie und Metallkunde. Chemisches Zentrallblatt 93(Pt. 1, No. 1):251–252

    Google Scholar 

  54. Fischer W, Brünger K, Grieneisen H (1937) Über das metallische Scandium. Z Anorg Allg Chem 231(1–2):54–62

    Article  CAS  Google Scholar 

  55. Brunck O (1906) Clemens Winkler. Ber Dtsch Chem Ges 39(4):4491–4548

    Article  Google Scholar 

  56. Hinrichs CG (1904) Clemens Alexander Winkler. Am Jour Pharm 76:532–534

    Google Scholar 

  57. McCay L (1930) My student days in Germany. J Chem Educ 7:1081–1099

    Article  CAS  Google Scholar 

  58. Pasteur L (1954) Inaugural lecture, University of Lille, 7 December 1854. In: Peterson H (ed) A treasury of the world’s great speeches. Simon & Schuster, New York, p 473

    Google Scholar 

  59. Witzke T. Argyrodit. https://tw.strahlen.org/typloc/argyrodit.html. Accessed 29 Feb 2020

  60. Weisbach A (1886) Argyrodit, ein neues Silbererz. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie II:67–71

    Google Scholar 

  61. Winkler CA (1886) Germanium, ein neues nonmetallische Element. Ber Dtsch Chem Ges 19:210–211

    Article  Google Scholar 

  62. Weinert CS (2020) Die Chemie ist schwierig: Winkler and the discovery of germanium. Bull Hist Chem 45(1):8–15

    CAS  Google Scholar 

  63. Lecoq de Boisbaudran P-É (1886) Sur le poids atomique et sur le spectre du germanium. C R Séances Acad Sci 102:1291–1295

    Google Scholar 

  64. Winkler CA (1887) Mittheilungen über das Germanium. J Prakt Chem 36:177–208

    Article  Google Scholar 

  65. Haller EE (2006) Germanium: from its discovery to SiGe devices. Mater Sci Semicond Process 9:408–422

    Article  CAS  Google Scholar 

  66. Haller EE (2006) Germanium: from its discovery to SiGe devices. US Department of Energy: Office of Scientific and Technical Information. https://www.osti.gov/biblio/922705. Accessed 29 Feb 2020

  67. Shanks WCP III, Kimball BE, Tolcin AC, Guberman DE (2017) Germanium and indium. Chapter 1 in: Schulz KJ, DeYoung JH Jr, Seal RR II, Bradley DC (eds) Critical mineral resources of the United States—economic and environmental geology and prospects for future supply, USGS. https://pubs.er.usgs.gov/publication/pp1802I. Accessed 29 Feb 2020

  68. Roberts AC, Seward TM, Reusser E, Carpenter GJC, Grice JD, Clark S, Marcus MA (2004) Eyselite, Fe3+ Ge4+ 3O7(OH), a new mineral species from Tsumeb, Namibia. Can Mineral 42:1771–1776

    Article  CAS  Google Scholar 

  69. Cowan J (2003) Elements of surprise. Nature 423 (1 May):29

    Google Scholar 

  70. Brauner B (1902) Über die Stellung der Elemente der seltenen Erden im periodischen system von Mendelejeff. Z Anorg Chem 32:1–30

    Article  Google Scholar 

  71. Moseley HGJ to James C, James Collection UNH Archives, UA 8/3/1, S.1, B.1, F.11, 27 May 1914

    Google Scholar 

  72. Brauner B (1926) The new element of atomic number 61: illinium. Nature 118(2959):84

    Article  CAS  Google Scholar 

  73. Fontani M, Costa M, Orna MV (2014) The lost elements: the periodic table’s shadow side. Oxford University Press, New York, p 308, footnote 258

    Google Scholar 

  74. Adunka R, Orna MV (2018) Carl Auer von Welsbach: Chemist, inventor, entrepreneur. Springer, Cham, pp 35–46

    Book  Google Scholar 

  75. Kirchhoff G (1860) Über das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann Phys 185(2):275–301

    Article  Google Scholar 

  76. Kirchhoff G (1860) Über die Fraunhofer’schen Linien. Ann Phys 185(1):148–150

    Article  Google Scholar 

  77. Jensen WB (2005) The origin of the Bunsen burner. J Chem Educ 82:518

    Article  CAS  Google Scholar 

  78. Kirchhoff G, Bunsen R (1861) Chemische Analyse durch Spectralbeobachtungen. Ann Phys (Berlin) 189:337–381

    Article  Google Scholar 

  79. Weeks ME (1932) The discovery of the elements. XIII. Some spectroscopic discoveries. J Chem Educ 9:1413–1434

    Article  Google Scholar 

  80. Setterberg C (1881) Über die Darstellung von Rubidium- und Cäsium Verbindungen. Ann Phys (Berlin) 211:100–116

    Google Scholar 

  81. Dronsfield A (2010) Look who discovered caesium. Educ Chem (London) July 1. https://eic.rsc.org/feature/look-who-discovered-caesium-/2020183.article. Accessed 16 Jan 2019

  82. Rancke-Madsen E (1976) The discovery of an element. Centaurus 19(4):299–313

    Article  Google Scholar 

  83. Harvey BG et al (1976) Criteria for the discovery of chemical elements. Science 193:1271–1272

    Article  CAS  PubMed  Google Scholar 

  84. Wapstra AH (1991) Criteria that must be satisfied for the discovery of a new element to be recognized. Pure & Appl Chem 63(6):879–886

    Article  CAS  Google Scholar 

  85. Taylor JK (1986) The impact of instrumentation on analytical chemistry. In: Stock JT, Orna MV (eds) The history and preservation of chemical instrumentation, D. Reidel, Dordrecht, pp 1–10

    Google Scholar 

  86. Altemose I (1986) Evolution of instrumentation for UV-visible spectrophotometry, part 1. J Chem Educ 63(9):A216–A223

    Article  CAS  Google Scholar 

  87. Trifonov DN, Trifonov VD (1982) Chemical elements. How they were discovered. MIR Publisher, Moscow, pp 156–164

    Google Scholar 

  88. Fontani M, Costa M, Orna MV (2019) Ipotesi sui limiti della Tavola Periodica di Mendeleev: dalla nascita agli albori della meccanica quantistica. Rendiconti Accademia Nazionale delle Scienze detta dei XL Memorie di scienze fisiche e naturali, 137° Vol. XLIII, Parte II, Tomo II, pp 129–138

    Google Scholar 

  89. Lente G (2019) Where Mendeleev was wrong: predicted elements that have never been found. ChemTexts 5:17. https://doi.org/10.1007/s40828-019-0092-5. Accessed 30 May 2020

  90. Mendeléeff D (1904) An attempt towards a chemical conception of the ether. Longmans, Green & Co., London

    Google Scholar 

  91. Jensen WB (ed) (2005) Mendeleev on the periodic law: selected writings 1869–1905. Dover Publications, Mineola, NY, pp 227–252

    Google Scholar 

  92. Orna MV, Fontani M (2019) Discovery of the actinide and transactinide elements. In: Evans WJ, Hanusa TP (eds) The heaviest metals: science and technology of the actinides and beyond. Wiley, New York, pp 3–30

    Google Scholar 

  93. Hoffman DC, Ghiorso A, Seaborg GT (2000) The transuranium people. Imperial College Press, London, pp 400–425

    Google Scholar 

  94. Hadhazy A (2019) The top 10 scientific experiments of all time. https://www.discovermagazine.com/the-sciences/the-top-10-science-experiments-of-all-time. Accessed 24 Mar 2020

Download references

Acknowledgements

Our great gratitude goes to Sally B. Mitchell, our wonderful colleague in the ACS Division of the History of Chemistry, for helping make the entire panorama of the periodic system accessible to us over the entire time it took us to develop this chapter. We also thank Dr. Soňa Štrbaňová and Dr. William B. Ashworth, Jr. for helping us access some important reference material. We are also grateful to the editors of this volume, Gregory S. Girolami, Carmen Giunta, and Vera V. Mainz for the opportunity to undertake this challenging task and for their painstaking guidance. Special thanks are due to Dr. Girolami and the anonymous reviewers whose very helpful and detailed criticism made this chapter so much better.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Orna, M.V., Fontani, M. (2021). Discovery of Three Elements Predicted by Mendeleev’s Table: Gallium, Scandium, and Germanium. In: Giunta, C.J., Mainz, V.V., Girolami, G.S. (eds) 150 Years of the Periodic Table. Perspectives on the History of Chemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-67910-1_10

Download citation

Publish with us

Policies and ethics