Skip to main content

Nonlinear PSE Transition Predictions in Hypersonic Boundary Layers with Finite-Rate Chemical Reactions

  • Conference paper
  • First Online:
IUTAM Laminar-Turbulent Transition

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 38))

Abstract

Transition on a Mach 10 adiabatic flat-plate boundary layer is analyzed by means of nonlinear parabolized stability equations (NPSE). To the best of authors’ knowledge, for the first time NPSE are derived and applied to the study of a finite-rate chemically reacting flow. A fundamental breakdown transition mechanism is investigated within two flow assumptions: a frozen and a 5-species chemical nonequilibrium air mixture. The set of hypotheses deployed modifies the predicted perturbation-amplitude evolution, as well as the types of harmonics that are excited. This results in an earlier predicted transition onset in the case of a chemically reacting flow. The effect of chemical reactions is confirmed to be predominant in the base flow, while it is weak on the perturbation field. In particular, the chemically driven modification of the disturbance quantities shows a tendency to slightly increase perturbation amplitudes, contrary to what previous linear N-factor predictions revealed. Moreover, they lead to the appearance of a second distortion region of the boundary-layer temperature field, localized close the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Throughout this article the word mode is not used in its mathematical meaning, but as synonym of disturbance harmonic, as defined by Eq. (4).

References

  1. Kimmel, R.L.: Aspects of hypersonic boundary-layer transition control. In: 41st Aerospace Sciences Meeting and Exhibit, vol. 2003, p. 772 (2003)

    Google Scholar 

  2. Reed, H.L., Kimmel, R.L., Schneider, S.P., Arnal, D.: Drag prediction and transition in hypersonic flow. In: AIAA paper 1997-1818 (1997)

    Google Scholar 

  3. Lockwood, M.K., Petley, D.H., Martin, J.G., Hunt, J.L.: Airbreathing hypersonic vehicle design and analysis methods and interactions. Prog. Aerosp. Sci. 35 (1999)

    Google Scholar 

  4. Anderson Jr., J.D.: Hypersonic and High Temperature Gas Dynamics, 2nd edn. American Institute of Aeronautics and Astronautics, Reston (2006)

    Google Scholar 

  5. Stuckert, G., Reed, H.L.: Linear disturbances in hypersonic, chemically reacting shock layers. AIAA J. 32(7), 1384–1393 (1994)

    Article  Google Scholar 

  6. Hudson, M.L., Chokani, N., Candler, G.V.: Linear stability of hypersonic flow in thermochemical nonequilibrium. AIAA J. 35(6), 958–964 (1997)

    Article  Google Scholar 

  7. Malik, M.R., Anderson, E.C.: Real gas effects on hypersonic boundary-layer stability. Phys. Fluids 803(3), 803–821 (1991)

    Article  Google Scholar 

  8. Chang, C.-L., Vinh, H., Malik, M.R.: Hypersonic boundary-layer stability with chemical reactions using PSE. In: AIAA paper 1997-2012 (1997)

    Google Scholar 

  9. Kline, H.L., Chang, C.-L., Li, F.: Hypersonic chemically reacting boundary-layer stability using LASTRAC. In: AIAA paper 2018-3699 (2018)

    Google Scholar 

  10. Zanus, L., Miró Miró, F., Pinna, F.: Weak non-parallel effects on chemically reacting hypersonic boundary layer stability. In: AIAA paper 2019-2853 (2019)

    Google Scholar 

  11. Johnson, H.B., Candler, G.V.: PSE analysis of reacting hypersonic boundary layer transition. In: AIAA paper 99-3793 (1999)

    Google Scholar 

  12. Johnson, H.B., Seipp, T.G., Candler, G.V.: Numerical study of hypersonic reacting boundary layer transition on cones. Phys. Fluids 10(10), 2676–2685 (1998)

    Article  Google Scholar 

  13. Johnson, H.B., Candler, G.V.: Analysis of laminar-turbulent transition in hypersonic flight using PSE-Chem. In: AIAA paper 2006-3057 (2006)

    Google Scholar 

  14. Marxen, O., Iaccarino, G., Magin, T.E.: Direct numerical simulations of hypersonic boundary-layer transition with finite-rate chemistry. J. Fluid Mech. 755, 35–49 (2014)

    Article  MathSciNet  Google Scholar 

  15. Di Giovanni, A., Stemmer, C.: Roughness-induced boundary-layer transition on a hypersonic capsule-like forebody including nonequilibrium. J. Spacecr. Rocket., pp. 1–14 (2019)

    Google Scholar 

  16. Herbert, T.: Parabolized stability equations. In: AGARD 793 Progress in Transition Modelling, pp. 4.1–4.34 (1993)

    Google Scholar 

  17. Joslin, R.D., Streett, C.L., Chang, C.L.: Spatial direct numerical simulation of boundary-layer transition mechanisms: validation of PSE theory. Theor. Comput. Fluid Dyn. 4(6), 271–288 (1993)

    Article  Google Scholar 

  18. Zanus, L., Pinna, F.: Stability analysis of hypersonic flows in local thermodynamic equilibrium conditions by means of nonlinear PSE. In: AIAA paper 2018-3696 (2018)

    Google Scholar 

  19. Zanus, L., Miró Miró, F., Pinna, F.: Parabolized stability analysis of chemically reacting boundary layer flows in equilibrium conditions. Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng. 234(1), 79–95 (2020)

    Google Scholar 

  20. Pinna, F., Groot, K.J.: Automatic derivation of stability equations in arbitrary coordinates and different flow regimes. In: AIAA paper 2014-2634 (2014)

    Google Scholar 

  21. Aris, R.: Vectors, Tensors, and the Basic Equations of Fluid Mechanics, 2nd edn. Dover - Prentice Hall, New York (1962)

    Google Scholar 

  22. Park, C., Jaffe, R.L., Partridge, H.: Chemical-kinetic parameters of hyperbolic earth entry. J. Thermophys. Heat Transf. 15(1), 76–90 (2001)

    Article  Google Scholar 

  23. Scoggins, J.B., Magin, T.E.: Development of mutation++: multicomponent thermodynamics and transport properties for IONized gases library in C++. In: AIAA paper, vol. 2014, p. 2966 (2014)

    Google Scholar 

  24. Yos, J.M.: Approximate equations for the viscosity and translational thermal conductivity of gas mixtures. Technical report AVSSD-0112-67-RM, Avco Corporation (1967)

    Google Scholar 

  25. Gupta, R.N., Yos, J.M., Thompson, R.A., Lee, K.-P.: A review of reaction rates and thermodynamic and transport properties for an 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K. Technical report RP-1232, NASA (1990)

    Google Scholar 

  26. Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases and Liquids, 2nd edn. Wiley, New York (1954)

    Google Scholar 

  27. Magin, T.E., Degrez, G.: Transport algorithms for partially ionized and unmagnetized plasmas. J. Comput. Phys. 198(2), 424–449 (2004)

    Article  Google Scholar 

  28. Miró Miró, F., Beyak, E.S., Pinna, F., Reed, H.L.: High-enthalpy models for boundary-layer stability and transition. Phys. Fluids 31(044101) (2019)

    Google Scholar 

  29. Wright, M.J., Bose, D., Palmer, G.E., Levin, E.: Recommended collision integrals for transport property computations part I: air species. AIAA J. 43(12), 2558–2564 (2005)

    Article  Google Scholar 

  30. Pinna, F.: Numerical study of stability of flows from low to high Mach number. PhD thesis, Università degli Studi di Roma La Sapienza (2012)

    Google Scholar 

  31. Groot, K.J., Miró Miró, F., Beyak, E.S., Moyes, A.J., Pinna, F., Reed, H.L.: DEKAF: spectral multi-regime basic-state solver for boundary layer stability. In: AIAA paper 2018-3380 (2018)

    Google Scholar 

  32. Miró Miró, F., Beyak, E.S., Mullen, D., Pinna, F., Reed, H.L.: Ionization and dissociation effects on hypersonic boundary-layer stability. In: 31st ICAS Congress (Belo Horizonte, Brazil), International Council of the Aeronautical Sciences (2018)

    Google Scholar 

  33. Hader, C., Fasel, H.F.: Towards simulating natural transition in hypersonic boundary layers via random inflow disturbances. J. Fluid Mech. 847(July) (2018)

    Google Scholar 

  34. Klentzman, J., Tumin, A.: Stability and receptivity of high speed boundary layers in oxygen. In: AIAA paper 2013-2882 (2013)

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Belgian National Fund for Scientific Research (FNRS), through the FRIA fellowship (FNRS, dossier FC21045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Zanus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zanus, L., Miró Miró, F., Pinna, F. (2022). Nonlinear PSE Transition Predictions in Hypersonic Boundary Layers with Finite-Rate Chemical Reactions. In: Sherwin, S., Schmid, P., Wu, X. (eds) IUTAM Laminar-Turbulent Transition. IUTAM Bookseries, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-67902-6_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67902-6_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67901-9

  • Online ISBN: 978-3-030-67902-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics