Skip to main content

Progress in Stability and Transition Research

  • Conference paper
  • First Online:
IUTAM Laminar-Turbulent Transition

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 38))

  • 1468 Accesses

Abstract

This paper provides an overview of the theoretical and computational boundary-layer receptivity, stability, and control research conducted by the author over the past four decades in collaboration with her colleagues and students. The overarching approach has been one of verification and validation, including working closely with experimentalists (both with ground facilities and flight platforms) to achieve closure between theory and experiment. She and her team have worked to identify instability mechanisms in complex three-dimensional (3-D) configurations, create and transfer physics-based models and tools, guidelines, and correlations including for surface features, and formulate effective control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morkovin, M., Reshotko, E., Herbert, T.: Transition in open flow systems—a reassessment. Bull. Am. Phys. Soc. 39(9), 1882 (1994)

    Google Scholar 

  2. Saric, W., Reed, H., Kerschen, E.: Boundary-layer receptivity to freestream disturbances. Ann. Rev. Fluid Mech. 34, 291–319 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Reed, H., Reshotko, E., Saric, W.: Receptivity: the inspiration of Mark Morkovin. AIAA-2015–2471 (2015)

    Google Scholar 

  4. Mack, L.: Boundary-layer linear stability theory. AGARD Report 709: Special Course on Stability and Transition of Laminar Flow, 3.1–3.81 (1984)

    Google Scholar 

  5. Reed, H., Saric, W., Arnal, D.: Linear stability theory applied to boundary layers. Ann. Rev. Fluid Mech. 28, 389–428 (1996)

    Article  MathSciNet  Google Scholar 

  6. Arnal, D., Casalis, G., Houdeville, R.: Practical transition prediction methods: subsonic and transonic flows. RTO-EN-AVT-151—Adv in Laminar-Turb Transition Modeling. VKI, 9–12 June (2008)

    Google Scholar 

  7. Saric, W.: Görtler vortices. Ann. Rev. Fluid Mech. 26, 379-409 (1994)

    Article  MATH  Google Scholar 

  8. Saric, W., Reed, H., White, E.: Stability of three-dimensional boundary layers. Ann. Rev. Fluid Mech. 35, 413–442 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schmid, P., Henningson, D.: Stability and Transition in Shear Flows. Springer-Verlag (2001)

    Google Scholar 

  10. Klebanoff, P., Tidstrom, K., Sargent, L.: The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12(1), 1-34 (1962)

    Article  MATH  Google Scholar 

  11. Andersson, P., Berggren, M., Henningson, D.: Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11(1), 134–150 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Luchini, P.: Reynolds-number independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289–309 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Andersson, P., Brandt, L., Bottaro, A., Henningson, D.: On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 29–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tumin, A., Reshotko, E.: Spatial theory of optimal disturbances in boundary layers. Phys. Fluids 13(7), 2097–2104 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Saric, W., Carrillo, R., Reibert, M.: Nonlinear stability and transition in 3-D boundary layers. Meccanica 33(5), 469–487 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pfenninger, W., Reed, H., Dagenhart, J.: Design considerations of advanced supercritical low drag suction airfoils. Viscous Flow Drag Reduction, AIAA Prog in Astro and Aero Series 72, 249-271 (1980)

    Google Scholar 

  17. Pfenninger, W., Vemuru, C.: Design philosophy of long range LFC transports with advanced supercritical LFC airfoils. In: Barnwell, R., Hussaini, M. (eds.) Natural Laminar Flow and Laminar Flow Control, ICASE/NASA LaRC Series, pp. 177-221. Springer, New York, NY (1992)

    Google Scholar 

  18. Malik, M., Crouch, J., Saric, W., Lin, J., Whalen, E.: Application of drag reduction techniques to transport aircraft. In: Blockley, R., Shyy, W. (eds.) Encyclopedia Aero Eng. John Wiley: Chichester (2015)

    Google Scholar 

  19. Pfenninger, W.: Laminar flow control—laminarization. AGARD Report 654: special course on concepts for drag reduction, 3.1–3.75 (1977)

    Google Scholar 

  20. Nayfeh, A., Reed, H., Ragab, S.: Flow over plates with suction through porous strips. AIAA J. 20(5), 587–588 (1982). May

    Article  MATH  Google Scholar 

  21. Reed, H., Nayfeh, A.: Numerical-perturbation technique for stability of flat-plate boundary layers with suction. AIAA J. 24(2), 208–214 (1986). Feb

    Article  MathSciNet  MATH  Google Scholar 

  22. Saric, W., Reed, H.: Effect of suction and weak mass injection on boundary-layer transition. AIAA J. 24(3), 383–389 (1986). Mar

    Article  Google Scholar 

  23. Singer, B., Reed, H., Ferziger, J.: The effects of streamwise vortices on transition in the plane channel. Phys. Fluids A 1(12), 1960–1971 (1989). Dec

    Article  Google Scholar 

  24. Lin, N., Reed, H., Saric, W.: Effect of leading-edge geometry on boundary-layer receptivity to freestream sound. In: Hussaini, M., Kumar, A., Streett, C. (eds.) Instability, Transition, and Turbulence, pp. 421-440. Springer-Verlag, New York, NY (1992)

    Google Scholar 

  25. Buter, T., Reed, H.: Boundary layer receptivity to freestream vorticity. Phys. Fluids A 6(10), 3368–3379 (1994)

    Article  MATH  Google Scholar 

  26. Fuciarelli, D., Reed, H., Lyttle, I.: Direct numerical simulation of leading-edge receptivity to sound. AIAA J. 38(7), 1159–1165 (2000). July

    Article  Google Scholar 

  27. Oliviero, N., Kocian, T., Moyes, A., Reed, H.: EPIC: NPSE analysis of hypersonic crossflow instability on yawed straight circular cone. AIAA-2015–2772 (2015)

    Google Scholar 

  28. Moyes, A., Beyak, E., Kocian, T., Reed, H.: Accurate and efficient modeling of boundary-layer instabilities. AIAA-2019–1907 (2019)

    Google Scholar 

  29. Reed, H., Saric, W.: Stability of three-dimensional boundary layers. Ann. Rev. Fluid Mech. 21, 235–284 (1989). Jan

    Article  MathSciNet  Google Scholar 

  30. Balakumar, P., Reed, H.: Stability of three-dimensional supersonic boundary layers. Phys. Fluids A 3(4), 617–632 (1991). April

    Article  MATH  Google Scholar 

  31. Lin, R., Reed, H.: Effect of curvature on stationary crossflow instability of a three-dimensional boundary layer. AIAA J. 31(9), 1611–1617 (1993). Sep

    Article  MATH  Google Scholar 

  32. Reed, H., Haynes, T.: Transition correlations in three-dimensional boundary layers. AIAA J. 32(5), 923–929 (1994)

    Article  Google Scholar 

  33. Haynes, T., Reed, H.: Simulation of swept-wing vortices using nonlinear parabolized stability equations. J. Fluid Mech. 305, 325–349 (2000). Feb

    Article  MATH  Google Scholar 

  34. Moyes, A., Paredes, P., Kocian, T., Reed, H.: Secondary instability analysis of crossflow on a hypersonic yawed straight circular cone. J. Fluid Mech. 812, 370–397 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Moyes, A., Kocian, T., Mullen, D., Reed, H.: Boundary layer stability analysis of HIFiRE-5b flight geometry. Special Section on HIFiRE-5b. J. Spacecr. Rockets 55(6), 1341–1355 (2018) Nov

    Google Scholar 

  36. Kocian, T., Moyes, A., Reed, H., Craig, A., Saric, W., Schneider, S., Edelman, J.: Hypersonic crossflow instability. Special Section on NATO/STO AVT 240 "Hypersonic Boundary-Layer Transition Prediction". J. Spacecr. Rockets 56(2), 432-446 (2019) Mar

    Google Scholar 

  37. Moyes, A., Reed, H.: Nonlinear boundary-layer stability analysis of BOLT and HIFiRE-5. AIAA-2019–2972 (2019)

    Google Scholar 

  38. Moyes, A., Reed, H.: Pre-flight boundary-layer stability analysis of BOLT geometry. Special Section on Boundary Layer Transition Flight Experiment (BOLT) - Pre-Flight Studies. J. Spacecr. Rockets 58(1), 78-89 (2021) Jan

    Google Scholar 

  39. Mavris, D., Saric, W., Ran, H., Belisle, M., Woodruff, M., Reed, H.: Investigation of a health monitoring methodology for future natural laminar flow transport aircraft. In: ICAS_2010_193, 27th International Congress of the Aeronautical Sciences, September-October (2010)

    Google Scholar 

  40. Saric, W., Carpenter, A., Reed, H.: Passive control of transition with roughness in three-dimensional boundary layers. Philosoph. Trans. Royal Soc. A 369(1940), 1352–1364 (2011). Apr

    Article  MATH  Google Scholar 

  41. Saric, W., Reed, H.: Supersonic laminar flow control on swept wings using distributed roughness. AIAA-2002-0147 (2002)

    Google Scholar 

  42. Saric, W., Reed, H., Banks, D.: Flight testing of laminar flow control in high-speed boundary layers. RTO-MP-AVT-111: Enhancement of NATO Military Flight Vehicle Performance by Management of Interacting Boundary Layer Transition and Separation, 30, Prague (2004)

    Google Scholar 

  43. Tufts, M., Reed, H., Saric, W.: Design of an infinite-swept-wing glove for an in-flight discrete-roughness-element experiment. J. Aircr. 51(5), 1618–1631 (2014) Sep–Oct

    Google Scholar 

  44. Roberts, M., Reed, H., Saric, W.: Computational evaluation and linear stability of a transonic laminar-flow wing glove. J. Aircr. 52(2), 595–608 (2015) Mar–Apr

    Google Scholar 

  45. Saric, W., West, D., Tufts, M., Reed, H.: Experiments on discrete roughness element technology for swept-wing laminar flow control. Special Section on Controls. AIAA J 57(2), 641–654 (2019) Feb

    Google Scholar 

  46. Rizzetta, D., Visbal, M., Reed, H., Saric, W.: Direct numerical simulation of discrete roughness on a swept wing leading edge. AIAA J. 48(11), 2660–2673 (2010)

    Article  Google Scholar 

  47. Moyes, A., Kostak, H., Cox, C., Kocian, T., Saric, W., Reed, H., Rivera, J., Dale, G.: Drag reduction initial conditions on various legacy fleet aircraft: surface roughness measurements. AIAA-2017–0285 (2017)

    Google Scholar 

  48. Tufts, M., Duncan, G., Crawford, B., Reed, H., Saric, W.: Computational design of a test article to investigate 2-D surface excrescences on a swept laminar-flow wing. Int. J. Eng. Syst. Modell. Simul. 6(3/4), 181–190 (2014)

    Google Scholar 

  49. Duncan, G., Crawford, B., Tufts, M., Saric, W., Reed, H.: Flight experiments on the effects of step excrescences on swept-wing transition. Int. J. Eng. Syst. Modell. Simul. 6(3/4), 171–180 (2014)

    Google Scholar 

  50. Tufts, M., Reed, H., Crawford, B., Duncan, G., Saric, W.: Computational investigation of step excrescence sensitivity in a swept-wing boundary layer. J. Aircr. 54(2), 602–626 (2017) Mar–Apr

    Google Scholar 

  51. Groot, K., Beyak, E., Heston, D., Reed, H.: Boundary-layer stability of a natural-laminar-flow airfoil at flight conditions. AIAA-2020–3052 (2020)

    Google Scholar 

  52. Reed, H., Kimmel, R., Schneider, S., Arnal, D.: Drag prediction and transition in hypersonics. AIAA-1997–1818 (1997)

    Google Scholar 

  53. Stuckert, G., Reed, H.: Linear disturbances in hypersonic, chemically reacting shock layers. AIAA J. 32(7), 1384–1393 (1994)

    Article  MATH  Google Scholar 

  54. Lyttle, I., Reed, H., Shiplyuk, A., Maslov, A., Buntin, D., Schneider, S.: Numerical-experimental comparisons of second-mode behavior for blunted cones. AIAA J. 43(8), 1734–1743 (2005). Aug

    Article  Google Scholar 

  55. Lyttle, I., Reed, H.: Sensitivity of second-mode linear stability to constitutive models within hypersonic flow. AIAA-2005–0889 (2005)

    Google Scholar 

  56. Hofferth, J., Saric, W., Kuehl, J., Perez, E., Kocian, T., Reed, H.: Boundary-layer instability and transition on a flared cone in a Mach 6 quiet wind tunnel. Int. J. Eng. Syst. Modell. Simul. 5(1/2/3) 109–124 (2013)

    Google Scholar 

  57. Kocian, T., Perez, E., Oliviero, N., Kuehl, J., Reed, H.: Hypersonic stability analysis of a flared cone. AIAA-2013–0667 (2013)

    Google Scholar 

  58. Riha, A., Groot, K., Moyes, A., Reed, H.: Secondary-instability-mode identification in hypersonic crossflow-dominated boundary layers. AIAA-2020–2242 (2020)

    Google Scholar 

  59. Mullen, D., Moyes, A., Kocian, T., Beyak, E., Riha, A., Reed, H.: Parametric boundary-layer stability analysis on a hypersonic finned circular cone. AIAA-2018–3072 (2018)

    Google Scholar 

  60. Miró Miró, F., Beyak, E., Pinna, F., Reed, H.: Ionization and dissociation effects on boundary-layer stability. J Fluid Mech. 907, A13 (2021)

    Google Scholar 

  61. Miró Miró, F., Beyak, E., Pinna, F., Reed, H.: High-enthalpy models for boundary-layer stability and transition. Phys. Fluids 31(4), 044101 (2019) Apr

    Google Scholar 

  62. Herbert, T.: Parabolized stability equations. Ann. Rev. Fluid Mech. 29, 245–283 (1997)

    Article  MathSciNet  Google Scholar 

  63. Theofilis, V.: Global linear instability. Ann. Rev. Fluid Mech. 43, 319–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  64. Roache, P.: Quantification of uncertainty in computational fluid dynamics. Ann. Rev. Fluid Mech. 29, 123–160 (1997)

    Article  MathSciNet  Google Scholar 

  65. Reed, H., Perez, E., Kuehl, J., Kocian, T., Oliviero, N.: Verification and validation issues in hypersonic stability and transition prediction. Special Section on Numerical Simulation of Hypersonic Flows. J. Spacecr. Rockets 52(1), 29–37 (2015) Jan

    Google Scholar 

  66. Arnal, D.: Boundary layer transition: predictions based on linear theory. AGARD Report 793: Special Course on Progress in Transition Modelling (1994)

    Google Scholar 

  67. Malik, M.: Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86(2), 376–413 (1990)

    Article  MATH  Google Scholar 

  68. Groot, K., Miró Miró, F., Beyak, E., Moyes, A., Pinna, F., Reed, H.: DEKAF: spectral multi-regime basic-state solver for boundary layer stability. AIAA-2018–3380 (2018)

    Google Scholar 

  69. Reed, H., Kocian, T., Saric, W.: Interactive computations and experiments in stability and transition research. AIAA-2018–3320 (2018)

    Google Scholar 

  70. Reibert, M., Saric, W., Carrillo, R., Chapman, K.: Experiments in nonlinear saturation of stationary crossflow vortices in a swept-wing boundary layer. AIAA-1996–0184 (1996)

    Google Scholar 

  71. Roache, P., Fundamentals of Computational Fluid Dynamics (cover), Hermosa (1998)

    Google Scholar 

  72. Schneider, S.: Personal communication

    Google Scholar 

  73. Rhodes, R., Carpenter, A., Reed, H., Saric, W.: CFD analysis of flight-test configuration for LFC on swept wings. AIAA-2008–7336 (2008)

    Google Scholar 

  74. Rhodes, R., Reed, H., Saric, W., Carpenter, A., Neale, T.: Roughness receptivity in swept-wing boundary layers – computations. Int. J. Eng. Syst. Modell. Simul. 2(1/2), 139–148 (2010) Mar

    Google Scholar 

  75. Herbert, T.: Secondary instability of boundary layers. Ann. Rev. Fluid Mech. 20, 487 (1988)

    Article  Google Scholar 

  76. Kendall, J.: Experiments on the generation of Tollmien-Schlichting waves in a flat plate boundary layer by weak freestream turbulence. AIAA-1984-0011 (1984)

    Google Scholar 

  77. Kendall, J.: Experiments on boundary-layer receptivity to freestream turbulence. AIAA-1998-0530 (1998)

    Google Scholar 

  78. Kosorygin, V., Radeztsky, R., Saric, W.: Laminar boundary-layer, sound receptivity and control. In: Kobayashi, R. (eds.) Laminar-Turbulent Transition IV, pp. 517-524.  IUTAM Symposia (International Union of Theoretical and Applied Mechanics) (Springer, Berlin, Heidelberg, 1995)

    Google Scholar 

  79. Goldstein, M.: Scattering of acoustic waves into Tollmien-Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech. 154, 509–530 (1985)

    Article  MATH  Google Scholar 

  80. Goldstein, M., Hultgren, L.: A note on the generation of Tollmien-Schlichting waves by sudden surface-curvature change. J. Fluid Mech. 181, 519–525 (1987)

    Article  MATH  Google Scholar 

  81. Shahriari, N., Bodony, D., Hanifi, A., Henningson, D.: Acoustic receptivity simulations of flow past a flat plate with elliptic leading edge. J. Fluid Mech. 800, R2-1–R2-11 (2016)

    Google Scholar 

  82. Reynolds, G., Saric, W.: Experiments on the stability of a flat-plate boundary layer with suction. AIAA J. 24(2), 202–207 (1986)

    Article  Google Scholar 

  83. Deyhle, H., Bippes, H.: Disturbance growth in an unstable three-dimensional boundary layer and its dependence on initial conditions. J. Fluid Mech. 316, 73–113 (1996)

    Article  Google Scholar 

  84. Bippes, H.: Basic experiments on transition in three-dimensional boundary layers dominated by crossflow instability. Prog. Aerosp. Sci. 35(4), 363–412 (1999)

    Article  Google Scholar 

  85. White, E., Saric, W.: Secondary instability of crossflow vortices. J. Fluid Mech. 525, 275–308 (2005)

    Article  MATH  Google Scholar 

  86. Kohama, Y., Saric, W., Hoos, J.: A high-frequency secondary instability of crossflow vortices that leads to transition. In: Proceedings of the Royal Aeronautical Society: Boundary Layer Transition and Control, Cambridge, UK (1991)

    Google Scholar 

  87. Malik, M., Li, F., Chang, C.: Crossflow disturbances in three-dimensional boundary layers: nonlinear development, wave interaction and secondary instability. J. Fluid Mech 268, 1–36 (1994)

    Article  MATH  Google Scholar 

  88. Craig, S., Saric, W.: Crossflow instability in a hypersonic boundary layer. J. Fluid Mech. 808, 224–244 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  89. Saric, W.: Boundary-layer stability and transition. In: Tropea, C., Yarin, A., Foss, J. (eds.) Springer Handbook of Experimental Fluid Mechanics, Chap.12, pp. 886–896 (Springer-Verlag, Berlin, Heidelberg, 2007)

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges support over the years from: Air Force Research Laboratory, Air Force Office of Scientific Research, Arnold Engineering Development Center, Defense Advanced Research Projects Agency, National Aeronautics and Space Administration, National Institute of Aerospace, Office of Naval Research, Texas A&M High Performance Research Computing Group, Texas Advanced Computing Center, Pointwise, Lockheed Martin, Northrop Grumman, and Boeing. She is also grateful to the many outstanding graduate and undergraduate students and other colleagues with whom she has had the privilege to collaborate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen L. Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Reed, H.L. (2022). Progress in Stability and Transition Research. In: Sherwin, S., Schmid, P., Wu, X. (eds) IUTAM Laminar-Turbulent Transition. IUTAM Bookseries, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-030-67902-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67902-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67901-9

  • Online ISBN: 978-3-030-67902-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics