Skip to main content

On Algorithms to Find p-ordering

  • Conference paper
  • First Online:
Algorithms and Discrete Applied Mathematics (CALDAM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12601))

Included in the following conference series:

Abstract

The concept of p-ordering for a prime p was introduced by Manjul Bhargava (in his PhD thesis) to develop a generalized factorial function over an arbitrary subset of integers. This notion of p-ordering provides a representation of polynomials modulo prime powers, and has been used to prove properties of roots sets modulo prime powers. We focus on the complexity of finding a p-ordering given a prime p, an exponent k and a subset of integers modulo \(p^k\).

Our first algorithm gives a p-ordering for a set of size n in time \(\widetilde{\mathcal {O}}(nk\log p)\), where set is considered modulo \(p^k\). The subsets modulo \(p^k\) can be represented concisely using the notion of representative roots (Panayi, PhD Thesis, 1995; Dwivedi et al., ISSAC, 2019); a natural question is, can we find a p-ordering more efficiently given this succinct representation. Our second algorithm achieves precisely that, we give a p-ordering in time \(\widetilde{\mathcal {O}}(d^2k\log p + nk \log p + nd)\), where d is the size of the succinct representation and n is the required length of the p-ordering. Another contribution is to compute the structure of roots sets for prime powers \(p^k\), when k is small. The number of root sets have been given before (Dearden and Metzger, Eur. J. Comb., 1997; Maulick, J. Comb. Theory, Ser. A, 2001), we explicitly describe all the root sets for \(k\le 4\).

The full version is available at https://arxiv.org/abs/2011.10978.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adleman, L., Lenstra, H.: Finding irreducible polynomials over finite fields. In: Proceedings of 18th Annual ACM Symposium on Theory of Computing (STOC), pp. 350–355 (1986). https://doi.org/10.1145/12130.12166

  2. Agrawal, M., Kayal, N., Saxena, N.: Primes is in p. Ann. Math. 781–793 (2004)

    Google Scholar 

  3. Berlekamp, E.: Factoring polynomials over large finite fields. Math. Comput. 24, 713–735 (1970). https://doi.org/10.1090/S0025-5718-1970-0276200-X

  4. Berthomieu, J., Lecerf, G., Quintin, G.: Polynomial root finding over local rings and application to error correcting codes. Appl. Algebra Eng. Commun. Comput. 24(6), 413–443 (2013). https://doi.org/10.1007/s00200-013-0200-5

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhargava, M.: P-orderings and polynomial functions on arbitrary subsets of dedekind rings. Journal Fur Die Reine Und Angewandte Mathematik - J. REINE ANGEW Math. 101–128 (1997). https://doi.org/10.1515/crll.1997.490.101

  6. Bhargava, M.: The factorial function and generalizations. Am. Math. Mon. 107 (2000). https://doi.org/10.2307/2695734

  7. Bhargava, M.: On \(p\)-orderings, rings of integer values functions, and ultrametric analysis. J. Am. Math. Soc. 22(4), 963–993 (2009)

    Article  Google Scholar 

  8. Bose, R., Ray-Chaudhuri, D.: On a class of error correcting binary group codes *. Inf. Control 3, 68–79 (1960). https://doi.org/10.1016/S0019-9958(60)90287-4

  9. Cantor, D., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields. Math. Comput. 36 (1981). https://doi.org/10.2307/2007663

  10. Cheng, Q., Gao, S., Rojas, J.M., Wan, D.: Counting roots for polynomials modulo prime powers. Open Book Ser. 2(1), 191–205 (2019)

    Article  MathSciNet  Google Scholar 

  11. Chor, B., Rivest, R.: A knapsack type public key cryptosystem based on arithmetic in finite fields. IEEE Trans. Inf. Theory 34 (2001). https://doi.org/10.1109/18.21214

  12. Dearden, B., Metzger, J.: Roots of polynomials modulo prime powers. Eur. J. Comb. 18, 601–606 (1997). https://doi.org/10.1006/eujc.1996.0124

  13. Dwivedi, A., Mittal, R., Saxena, N.: Efficiently factoring polynomials modulo \(p^4\). In: International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 139–146 (2019). https://doi.org/10.1145/3326229.3326233

  14. Hocquenghem, A.: Codes correcteurs d’erreurs. Chiffres, Revue de l’Association Française de Calcul 2 (1959)

    Google Scholar 

  15. Johnson, K.: P-orderings of finite subsets of dedekind domains. J. Algebraic Combinatorics 30, 233–253 (2009)

    Article  MathSciNet  Google Scholar 

  16. Lenstra, A., Lenstra, H., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261 (1982). https://doi.org/10.1007/BF01457454

  17. Lenstra, H.W.: On the Chor—Rivest knapsack cryptosystem. J. Cryptol. 3(3), 149–155 (1991). https://doi.org/10.1007/BF00196908

    Article  MathSciNet  MATH  Google Scholar 

  18. Lidl, R., Niederreiter, H.: Finite Fields, vol. 20. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  19. Maulik, D.: Root sets of polynomials modulo prime powers. J. Comb. Theory, Ser. A 93, 125–140 (2001). https://doi.org/10.1006/jcta.2000.3069

  20. Odlyzko, A.M.: Discrete logarithms in finite fields and their cryptographic significance. In: Beth, T., Cot, N., Ingemarsson, I. (eds.) EUROCRYPT 1984. LNCS, vol. 209, pp. 224–314. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39757-4_20

    Chapter  Google Scholar 

  21. Panayi, P.N.: Computation of Leopoldt’s P-adic regulator. Ph.D. thesis, University of East Anglia (1995)

    Google Scholar 

  22. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8, 300–304 (1960). https://doi.org/10.2307/2098968

  23. Sudan, M.: Decoding reed solomon codes beyond the error-correction bound. J. Complexity 13, 180–193 (1997). https://doi.org/10.1006/jcom.1997.0439

  24. Zassenhaus, H.: On hensel factorization ii. J. Number Theory 1, 291–311 (1969). https://doi.org/10.1016/0022-314X(69)90047-X

Download references

Acknowledgements

We would like to thank Naman Jain for helpful discussions. R.M. would like to thank Department of Science and Technology, India for support through grant DST/INSPIRE/04/2014/001799.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Gulati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gulati, A., Chakrabarti, S., Mittal, R. (2021). On Algorithms to Find p-ordering. In: Mudgal, A., Subramanian, C.R. (eds) Algorithms and Discrete Applied Mathematics. CALDAM 2021. Lecture Notes in Computer Science(), vol 12601. Springer, Cham. https://doi.org/10.1007/978-3-030-67899-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67899-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67898-2

  • Online ISBN: 978-3-030-67899-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics