Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 202 Accesses

Abstract

This chapter presents the HHG driving pulse optimization results. The intensity and short pulse requirements to reach higher soft X-ray energies and better conversion ratio are discussed and different approaches are introduced. The previous, demanding, time-resolved X-ray absorption spectroscopy experiment in the gas phase leaned towards the option for an easy pulse shortening scheme. The adopted two-stage pulse broadening by filamentation coupled to a very simple post-compression technique is environmentally robust and leads to a 0.2 TW sub-two-cycle short-wavelength infrared pulse. The latter can drive high-order harmonics beyond the oxygen K absorption edge with similar flux conditions as obtained during the successful gas dissociation measurements at the carbon K-edge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pertot Y et al. (2017) Time-resolved x-ray absorption spectroscopy with a water window high-harmonic source. Science (80), 355(6322):264–267

    Google Scholar 

  2. Brabec T, Krausz F (2000) Intense few-cycle laser fields: frontiers of nonlinear optics. Rev Mod Phys 72(2):545–591

    Article  ADS  Google Scholar 

  3. Hauri CP et al (2004) Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl Phys B 79(6):673–677

    Article  ADS  Google Scholar 

  4. Stibenz G, Zhavoronkov N, Steinmeyer G (2006) Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament. In: 2006 conference on lasers and electro-optics and 2006 quantum electronics and laser science conference, pp 1–2

    Google Scholar 

  5. Skupin S et al (2006) Self-compression by femtosecond pulse filamentation: experiments versus numerical simulations. Phys Rev E Stat Nonlinear Soft Matter Phys

    Google Scholar 

  6. Couairon A, Mysyrowicz A (2007) Femtosecond filamentation in transparent media. Phys Rep 441(2):47–189

    Article  ADS  Google Scholar 

  7. Suda A, Hatayama M, Nagasaka K, Midorikawa K (2003) Generation of 9-fs 5-mJ pulses using a hollow fiber with pressure gradient. In OSA trends in optics and photonics series

    Google Scholar 

  8. Schmidt BE et al (2010) Compression of 1.8 μm laser pulses to sub two optical cycles with bulk material. Appl Phys Lett 96(12):121109

    Google Scholar 

  9. Béjot P, Schmidt BE, Kasparian J, Wolf JP, Legaré F (2010) Mechanism of hollow-core-fiber infrared-supercontinuum compression with bulk material. Phys Rev A At Mol Opt Phys 81(6)

    Google Scholar 

  10. Silva F, Teichmann SM, Cousin SL, Hemmer M, Biegert J (2015) Spatiotemporal isolation of attosecond soft X-ray pulses in the water window. Nat Commun 6:6611

    Article  ADS  Google Scholar 

  11. Cousin SL, Silva F, Teichmann S, Hemmer M, Buades B, Biegert J (2014) High-flux table-top soft x-ray source driven by sub-2-cycle, CEP stable, 1.85-μm 1-kHz pulses for carbon K-edge spectroscopy. Opt Lett 39(18):5383–5386

    Article  ADS  Google Scholar 

  12. Vozzi C et al (2006) High-energy, few-optical-cycle pulses at 1.5 µm with passive carrier-envelope phase stabilization. Opt Express 14(21):10109

    Google Scholar 

  13. Kosareva OG et al (2008) Optimization of a femtosecond pulse self-compression region along a filament in air. Appl Phys B Lasers Opt

    Google Scholar 

  14. Bergé L, Skupin S, Steinmeyer G (2008) Temporal Self-restoration of compressed optical filaments. Phys Rev Lett 101(21):213901

    Article  ADS  Google Scholar 

  15. Bergé L, Skupin S, Nuter R, Kasparian J, Wolf J-P (2007) Ultrashort filaments of light in weakly ionized, optically transparent media. Reports Prog Phys 70(10):1633

    Article  ADS  Google Scholar 

  16. Demirdöven N, Khalil M, Golonzka O, Tokmakoff A (2002) Dispersion compensation with optical materials for compression of intense sub-100-fs mid-infrared pulses. Opt Lett 27(6):433

    Article  ADS  Google Scholar 

  17. Demircan A, Kroh M, Bandelow U, Hüttl B, Weber HG (2006) Compression limit by third-order dispersion in the normal dispersion regime. IEEE Photonics Technol Lett

    Google Scholar 

  18. Schmidt C et al (2018) High-order harmonic source spanning up to the oxygen K-edge based on filamentation pulse compression. Opt Express 26(9):11834

    Article  ADS  Google Scholar 

  19. Zahedpour S, Wahlstrand JK, Milchberg HM (2015) Measurement of the nonlinear refractive index of air constituents at mid-infrared wavelengths. Opt Lett 40(24):5794

    Article  ADS  Google Scholar 

  20. Agrawal G (2001) Nonlinear fiber optics. Elsevier Science

    Google Scholar 

  21. Panagiotopoulos P, Whalen P, Kolesik M, Moloney JV (2015) Super high power mid-infrared femtosecond light bullet. Nat Photonics 9(8):543–548

    Article  ADS  Google Scholar 

  22. Ahmad I, Bergé L, Major Z, Krausz F, Karsch S, Trushin SA (2011) Redshift of few-cycle infrared pulses in the filamentation regime. New J Phys 13(9):93005

    Article  Google Scholar 

  23. Driever S et al (2013) Tunable 1.6–2 μm near infrared few-cycle pulse generation by filamentation. Appl Phys Lett 102(19):191119

    Google Scholar 

  24. Zaïr A et al (2007) Spatio-temporal characterization of few-cycle pulses obtained by filamentation. Opt Express

    Google Scholar 

  25. Brée C, Demircan A, Steinmeyer G (2010) Method for computing the nonlinear refractive index via Keldysh theory. IEEE J Quant Electron 46(4):433–437

    Article  ADS  Google Scholar 

  26. Rice JE (1992) Frequency-dependent hyperpolarizabilities for argon, krypton, and neon: comparison with experiment. J Chem Phys 96(10):7580–7586

    Article  ADS  Google Scholar 

  27. Nisoli M, De Silvestri S, Svelto O (1996) Generation of high energy 10 fs pulses by a new pulse compression technique. Appl Phys Lett 68(20):2793–2795

    Article  ADS  Google Scholar 

  28. Corkum PB, Rolland C, Srinivasan-Rao T (1986) Supercontinuum generation in gases. Phys Rev Lett 57(18):2268–2271

    Article  ADS  Google Scholar 

  29. Faccio D, Porras MA, Dubietis A, Bragheri F, Couairon A, Di Trapani P (2006) Conical emission, pulse splitting, and x-wave parametric amplification in nonlinear dynamics of ultrashort light pulses. Phys Rev Lett 96(19):193901

    Article  ADS  Google Scholar 

  30. Béjot P, Kasparian J (2011) Conical emission from laser filaments and higher-order Kerr effect in air 36:4812–4814

    Google Scholar 

  31. Milián C et al (2015) Laser beam self-symmetrization in air in the multifilamentation regime. J Phys B At Mol Opt Phys 48(9):94013

    Article  Google Scholar 

  32. Prade B et al (2006) Spatial mode cleaning by femtosecond filamentation in air. Opt Lett 31(17):2601–2603

    Article  ADS  Google Scholar 

  33. Liu W, Chin SL (2007) Abnormal wavelength dependence of the self-cleaning phenomenon during femtosecond-laser-pulse filamentation. Phys Rev A 76(1):013826

    Article  ADS  Google Scholar 

  34. Moll KD, Gaeta AL, Fibich G (2003) Self-similar optical wave collapse: observation of the townes profile. Phys Rev Lett 90(20):203902

    Article  ADS  Google Scholar 

  35. Kolesik M, Wright EM, Moloney JV (2005) Interpretation of the spectrally resolved far field of femtosecond pulses propagating in bulk nonlinear dispersive media. Opt Express 13(26):10729

    Article  ADS  Google Scholar 

  36. Conti C et al (2003) Nonlinear electromagnetic X waves. Phys Rev Lett 90(17):170406

    Article  ADS  Google Scholar 

  37. Porras MA, Parola A (2009) X and Y waves in the spatiotemporal Kerr dynamics of a self-guided light beam. Opt Commun 282(4):644–652

    Article  ADS  Google Scholar 

  38. Schmidt BE et al (2014) Intense few-cycle infrared laser pulses at the advanced laser light source. Chin J Phys 52(1):537–545

    Google Scholar 

  39. Chang Z, Rundquist A, Wang H, Murnane MM, Kapteyn HC (1997) Generation of coherent soft x rays at 2.7 nm using high harmonics. Phys Rev Lett

    Google Scholar 

  40. Spielmann C et al (1997) Generation of coherent X-rays in the water window using 5-Femtosecond laser pulses. Science (80), 278(5338) :661–664

    Google Scholar 

  41. Schnürer M et al (1998) Coherent 0.5-keV x-ray emission from helium driven by a sub-10-fs laser. Phys Rev Lett

    Google Scholar 

  42. Tate J, Auguste T, Muller HG, Salières P, Agostini P, DiMauro LF (2007) Scaling of wave-packet dynamics in an intense midinfrared field. Phys Rev Lett 98(1):13901

    Article  ADS  Google Scholar 

  43. Henke BL, Gullikson EM, Davis JC (1993) X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50–30,000 eV, Z = 1–92. At Data Nucl Data Tables 54(2):181–342

    Article  ADS  Google Scholar 

  44. Sola IJ et al (2006) Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nat Phys

    Google Scholar 

  45. Goulielmakis E et al (2008) Single-cycle nonlinear optics. Science (80)

    Google Scholar 

  46. Teichmann SM, Silva F, Cousin SL, Hemmer M, Biegert J (2016) 0.5-keV Soft X-ray attosecond continua. Nat Commun 7:11493 EP

    Google Scholar 

  47. Johnson AS et al (2018) High-flux soft x-ray harmonic generation from ionization-shaped few-cycle laser pulses. Sci Adv 4(5):eaar3761

    Google Scholar 

  48. Kornelis W et al (2004) Single-shot dynamics of pulses from a gas-filled hollow fiber. Appl. Phys. B 79(8):1033–1039

    Article  ADS  Google Scholar 

  49. Hauri CP, Guandalini A, Eckle P, Kornelis W, Biegert J, Keller U (2005) Generation of intense few-cycle laser pulses through filamentation—parameter dependence. Opt Express

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric Schmidt .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmidt, C. (2021). Pulse Peak Power Optimization with Filamentation. In: Time-Resolved Soft X-Ray Absorption Spectroscopy of Molecules in the Gas and Liquid Phases. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-67838-8_5

Download citation

Publish with us

Policies and ethics