Skip to main content

Tell as You Imagine: Sentence Imageability-Aware Image Captioning

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2021)

Abstract

Image captioning as a multimedia task is advancing in terms of performance in generating captions for general purposes. However, it remains difficult to tailor generated captions to different applications. In this paper, we propose a sentence imageability-aware image captioning method to generate captions tailoring to various applications. Sentence imageability describes how easily the caption can be mentally imagined. This concept is applied to the captioning model to obtain a better understanding of the perception of a generated caption. First, we extend an existing image caption dataset by augmenting its captions’ diversity. Then, a sentence imageability score for each augmented caption is calculated. A modified image captioning model is trained using this extended dataset to generate captions tailoring to a specified imageability score. Experiments showed promising results in generating imageability-aware captions. Especially, results from a subjective experiment showed that the perception of the generated captions correlates with the specified score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.mturk.com/.

References

  1. Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: semantic propositional image caption evaluation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 382–398. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_24

    Chapter  Google Scholar 

  2. Biten, A.F., Gomez, L., Rusinol, M., Karatzas, D.: Good news, everyone! Context driven entity-aware captioning for news images. In: Proceedings of 2019 IEEE Conference Computer Vision Pattern Recognition, pp. 12466–12475 (2019)

    Google Scholar 

  3. Chen, S., Jin, Q., Wang, P., Wu, Q.: Say as you wish: fine-grained control of image caption generation with abstract scene graphs. In: Proceedings of 2020 IEEE Conference Computer Vision Pattern Recognition, pp. 9962–9971 (2020)

    Google Scholar 

  4. Chen, T., et al.: “Factual” or “Emotional”: stylized image captioning with adaptive learning and attention. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 527–543. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_32

    Chapter  Google Scholar 

  5. Cornia, M., Baraldi, L., Cucchiara, R.: Show, control and tell: a framework for generating controllable and grounded captions. In: Proceedings of 2019 IEEE Conference Computer Vision Pattern Recognition, pp. 8307–8316 (2019)

    Google Scholar 

  6. Cortese, M.J., Fugett, A.: Imageability ratings for 3,000 monosyllabic words. Behav. Res. Methods Instrum. Comput. 36(3), 384–387 (2004)

    Article  Google Scholar 

  7. Denkowski, M., Lavie, A.: METEOR universal: language specific translation evaluation for any target language. In: Proceedings of 2014 EACL Workshop on Statistical Machine Translation, pp. 376–380 (2014)

    Google Scholar 

  8. Guo, L., Liu, J., Yao, P., Li, J., Lu, H.: MSCap: multi-style image captioning with unpaired stylized text. In: Proceedings of 2019 IEEE Conference Computer Vision Pattern Recognition, pp. 4204–4213 (2019)

    Google Scholar 

  9. Karpathy, A., Li, F.F.: Deep visual-semantic alignments for generating image descriptions. In: Proceedings of 2015 IEEE Conference Computer Vision Pattern Recognition, pp. 3128–3137 (2015)

    Google Scholar 

  10. Kastner, M.A., et al.: Estimating the imageability of words by mining visual characteristics from crawled image data. Multimed. Tools Appl. 79(25), 18167–18199 (2020)

    Article  Google Scholar 

  11. Lin, C.Y.: ROUGE: a package for automatic evaluation of summaries. In: Proceedings of 2004 ACL Workshop on Text Summarization Branches Out, pp. 74–81 (2004)

    Google Scholar 

  12. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  13. Ljubešić, N., Fišer, D., Peti-Stantić, A.: Predicting concreteness and imageability of words within and across languages via word embeddings. In: Proceedings of 3rd Workshop on Representation Learning for NLP, pp. 217–222 (2018)

    Google Scholar 

  14. Lu, J., Yang, J., Batra, D., Parikh, D.: Neural baby talk. In: Proceedings 2018 IEEE Conference Computer Vision Pattern Recognition, pp. 7219–7228 (2018)

    Google Scholar 

  15. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  16. Mathews, A., Xie, L., He, X.: Semstyle: Learning to generate stylised image captions using unaligned text. In: Proceedings of 2018 IEEE Conference Computer Vision Pattern Recognition, pp. 8591–8600 (2018)

    Google Scholar 

  17. Matsuhira, C., et al.: Imageability estimation using visual and language features. In: Proceedings of 2020 ACM International Conference on Multimedia Retrieval, pp. 306–310 (2020)

    Google Scholar 

  18. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  19. Paivio, A., Yuille, J.C., Madigan, S.A.: Concreteness, imagery, and meaningfulness values for 925 nouns. J. Exp. Psycho. 76(1), 1–25 (1968)

    Article  Google Scholar 

  20. Pan, Y., Yao, T., Li, Y., Mei, T.: X-linear attention networks for image captioning. In: Proceeding of 2020 IEEE Conference on Computer Vision and Pattern Recognition, pp. 10971–10980 (2020)

    Google Scholar 

  21. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of 40th Annual Meeting Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  22. Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. In: Proceedings of 15th IEEE International Conference Computer Vision, pp. 2641–2649 (2015)

    Google Scholar 

  23. Reilly, J., Kean, J.: Formal distinctiveness of high-and low-imageability nouns: analyses and theoretical implications. Cogn. Sci. 31(1), 157–168 (2007)

    Article  Google Scholar 

  24. Scott, G.G., Keitel, A., Becirspahic, M., Yao, B., Sereno, S.C.: The Glasgow Norms: Ratings of 5,500 Words on Nine Scales. Springer, Heidelberg (2018)

    Google Scholar 

  25. Shuster, K., Humeau, S., Hu, H., Bordes, A., Weston, J.: Engaging image captioning via personality. In: Proceedings of 2019 IEEE Conference on Computer Vision and Pattern Recognition, pp. 12516–12526 (2019)

    Google Scholar 

  26. Thurstone, L.L.: The method of paired comparisons for social values. J. Abnorm. Psychol. 21(4), 384–400 (1927)

    Google Scholar 

  27. Vedantam, R., Lawrence Zitnick, C., Parikh, D.: CIDEr: consensus-based image description evaluation. In: Proceedings of 2015 IEEE Conference Computer Vision Pattern Recognition, pp. 4566–4575 (2015)

    Google Scholar 

  28. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image caption generator. In: Proceedings of 2015 IEEE Conference Computer Vision and Pattern Recognition, pp. 3156–3164 (2015)

    Google Scholar 

  29. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: Proceedings of 32nd International Conference on Machine Learning, pp. 2048–2057 (2015)

    Google Scholar 

  30. Zhang, M., Hwa, R., Kovashka, A.: Equal but not the same: understanding the implicit relationship between persuasive images and text. In: Proceedings of 2018 British Machine Vision Conference, No. 8, pp. 1–14 (2018)

    Google Scholar 

Download references

Acknowledgment

Parts of this research were supported by JSPS KAKENHI 16H02846 and MSR-CORE16 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Umemura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Umemura, K. et al. (2021). Tell as You Imagine: Sentence Imageability-Aware Image Captioning. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12573. Springer, Cham. https://doi.org/10.1007/978-3-030-67835-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67835-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67834-0

  • Online ISBN: 978-3-030-67835-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics