Badrinarayanan, V., Handa, A., Cipolla, R.: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling, May 2015. http://arxiv.org/abs/1505.07293
Boutsoukis, C., Manakos, I., Heurich, M., Delopoulos, A.: Canopy height estimation from single multispectral 2D airborne imagery using texture analysis and machine learning in structurally rich temperate forests. Remote Sens. 11(23) (2019). https://doi.org/10.3390/rs11232853. www.mdpi.com/journal/remotesensing
Cailleret, M., Heurich, M., Bugmann, H.: Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. For. Ecol. Manag. 328, 179–192 (2014)
CrossRef
Google Scholar
Dubayah, R., et al.: The global ecosystem dynamics investigation: high-resolution laser ranging of the earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020). https://doi.org/10.1016/j.srs.2020.100002
CrossRef
Google Scholar
Goetz, S., Steinberg, D., Dubayah, R., Blair, B.: Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA. Remote Sens. Environ. 108(3), 254–263 (2007). https://doi.org/10.1016/j.rse.2006.11.016
CrossRef
Google Scholar
Kaiser, Ł., Gomez, A.N., Chollet, F.: Depthwise separable convolutions for neural machine translation. In: 6th International Conference on Learning Representations, ICLR 2018 - Conference Track Proceedings. International Conference on Learning Representations, ICLR (2018)
Google Scholar
Lang, N., Schindler, K., Wegner, J.D.: Country-wide high-resolution vegetation height mapping with Sentinel-2. Remote Sens. Environ. 233 (2019). https://doi.org/10.1016/j.rse.2019.111347. https://arxiv.org/abs/1904.13270
Mitchell, A.L., Rosenqvist, A., Mora, B.: Current remote sensing approaches to monitoring forest degradation in support of countries measurement, reporting and verification (MRV) systems for REDD+. Carbon Balance Manag. 12(1), 1–22 (2017). https://doi.org/10.1186/s13021-017-0078-9
CrossRef
Google Scholar
Petrou, Z.I., Tarantino, C., Adamo, M., Blonda, P., Petrou, M.: Estimation of vegetation height through satellite image texture analysis. In: ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XXXIX-B8, pp. 321–326 (2012). https://doi.org/10.5194/isprsarchives-xxxix-b8-321-2012. http://www.academia.edu/download/43548529/isprsarchives-XXXIX-B8-321-2012.pdf
Petrou, Z.I., Manakos, I., Stathaki, T., Mucher, C.A., Adamo, M.: Discrimination of vegetation height categories with passive satellite sensor imagery using texture analysis. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8(4), 1442–1455 (2015). https://doi.org/10.1109/JSTARS.2015.2409131. https://ieeexplore.ieee.org/abstract/document/7061969/
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
CrossRef
Google Scholar
Rußwurm, M., Koerner, M.: Multi-temporal land cover classification with sequential recurrent encoders. ISPRS Int. J. Geo-Inf. 7(4), 129 (2018). https://doi.org/10.3390/ijgi7040129. http://www.mdpi.com/2220-9964/7/4/129
Silveyra Gonzalez, R., Latifi, H., Weinacker, H., Dees, M., Koch, B., Heurich, M.: Integrating LiDAR and high-resolution imagery for object-based mapping of forest habitats in a heterogeneous temperate forest landscape. Int. J. Remote Sens. 39(23), 8859–8884 (2018). https://doi.org/10.1080/01431161.2018.1500071. https://www.tandfonline.com/action/journalInformation?journalCode=tres20
Wang, X., Ouyang, S., Sun, O.J., Fang, J.: Forest biomass patterns across northeast China are strongly shaped by forest height. Forest Ecol. Manag. 293, 149–160 (2013). https://doi.org/10.1016/j.foreco.2013.01.001