Skip to main content

Classifier Belief Optimization for Visual Categorization

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12572))

Included in the following conference series:

  • 2433 Accesses

Abstract

Classifier belief represents the confidence of a classifier making judgment about a special instance. Based on classifier belief, we propose an approach to realize classifier belief optimization. Through enriching prior knowledge and thus reducing the scope of candidate classes, our approach improves classification accuracy. A feature perturbation strategy containing an objective optimization is developed to automatically generate labeled instances. Moreover, we propose a classifier consensus strategy (CCS) for classifier optimization. CCS enables a given classifier to take full advantage of the test data to enrich prior knowledge. Experiments on three benchmark datasets and three classical classifiers justify the validity of the proposed approach. We improve the classification accuracy of a linear SVM by 6%.

This work was supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (20XNA031).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2007)

    MATH  Google Scholar 

  3. Bonyadi, M.R., Michalewicz, Z.: Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm. IEEE Trans. Evol. Comput. 20(3), 370–385 (2016)

    Article  Google Scholar 

  4. Bundy, A., Wallen, L.: Dempster-Shafer Theory. Springer, Heidelberg (1984)

    Book  Google Scholar 

  5. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(3), 27 (2011)

    Article  Google Scholar 

  6. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. In: PAKDD, pp. 588–595 (2006)

    Google Scholar 

  7. Custódio, A.L., Rocha, H., Vicente, L.N.: Incorporating minimum Frobenius norm models in direct search. Comput. Optim. Appl. 46(2), 265–278 (2010). https://doi.org/10.1007/s10589-009-9283-0

    Article  MathSciNet  MATH  Google Scholar 

  8. Fu, Z., Lu, Z., Ip, H.H.S., Peng, Y., Lu, H.: Symmetric graph regularized constraint propagation. In: AAAI, pp. 350–355 (2011)

    Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  10. Hall, P., Park, B.U., Samworth, R.J.: Choice of neighbor order in nearest-neighbor classification. Ann. Stat. 36(5), 2135–2152 (2008)

    MathSciNet  MATH  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  12. Hinton, G.E., Salakhutdinov, R.R.: A better way to pretrain deep boltzmann machines. In: NIPS, pp. 2447–2455 (2012)

    Google Scholar 

  13. Kostina, E.A., Prischepova, S.V.: A new algorithm for minimax and l1-norm optimization. Optimization 44(3), 263–289 (1998)

    Article  MathSciNet  Google Scholar 

  14. Lauer, F., Suen, C.Y., Bloch, G.: A trainable feature extractor for handwritten digit recognition. Pattern Recogn. 40(6), 1816–1824 (2007)

    Article  Google Scholar 

  15. Lu, Z., Wang, L., Wen, J.R.: Direct semantic analysis for social image classification. In: AAAI, pp. 1258–1264 (2014)

    Google Scholar 

  16. Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: Proceedings of ICVGIP. Citeseer (2008)

    Google Scholar 

  17. Quost, B., Denœux, T., Masson, M.H.: Pairwise classifier combination using belief functions. Pattern Recogn. Lett. 28(5), 644–653 (2007)

    Article  Google Scholar 

  18. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: CVPR Workshops, pp. 806–813 (2014)

    Google Scholar 

  19. Shen, B., Liu, B.D., Wang, Q., Fang, Y., Allebach, J.P.: SP-SVM: large margin classifier for data on multiple manifolds. In: AAAI, pp. 2965–2971 (2015)

    Google Scholar 

  20. Skinner, B.: The Technology of Teaching. Appleton Century Crofts, New York (1968)

    Google Scholar 

  21. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: ICML, pp. 1096–1103 (2008)

    Google Scholar 

  22. Wang, J., Shen, X., Pan, W.: On transductive support vector machines. Contemp. Math. 443, 7–20 (2007)

    Article  MathSciNet  Google Scholar 

  23. Zhang, H., et al.: ResNeSt: split-attention networks. arXiv preprint arXiv:2004.08955 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xirong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, G., Li, X. (2021). Classifier Belief Optimization for Visual Categorization. In: Lokoč, J., et al. MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science(), vol 12572. Springer, Cham. https://doi.org/10.1007/978-3-030-67832-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67832-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67831-9

  • Online ISBN: 978-3-030-67832-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics