Skip to main content

Fate Decisions of CD4+ T Cells

  • Chapter
  • First Online:
Case Studies in Systems Biology
  • 733 Accesses

Abstract

The adaptive immune system in vertebrates plays key roles in response against pathogenic challenges. The adaptive immune response involves differentiation and activation of several types of memoryenabling immune cells, including T cells and B cells. A group of T cells with surface marker CD4 coordinate immune responses by activating and modulating other immune cells. Specific immune responses mounted by CD4+ T cells depend on the subtypes of these T cells. Several subtypes of CD4+ T cells have been identified to date, and their differentiation is marked by expression of signature cytokines and lineage-defining master transcription factors. It has been observed that multiple subtypes of CD4+ T cells can be generated through differentiation of a single population of progenitor (naïve) CD4+ T cells, and that co-expression of master transcription factors can occur in differentiated CD4+ T cells. In this chapter, we use mathematical models describing interactions of the master transcription factors to understand the mechanisms underlying the differentiation of heterogeneous populations of CD4+ T cells. We show that positive feedback loops involving master regulators and their connectivity to differentiation stimulants govern both the robust fate decisions of individual CD4+ T cells and the diversity of the differentiated cell population with multiple, synergistic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yuan S, Tao X, Huang S, Chen S, Xu A (2014) Comparative immune systems in animals. Annu Rev Anim Biosci 2(1):235–258

    Article  CAS  PubMed  Google Scholar 

  2. Medzhitov R, Janeway C Jr (2000) Innate immunity. N Engl J Med 343(5):338–344

    Article  CAS  PubMed  Google Scholar 

  3. Bonilla FA, Oettgen HC (2010) Adaptive immunity. J Allergy Clin Immunol 125(2):S33–S40

    Article  PubMed  Google Scholar 

  4. Miller JFAP (2002) The discovery of thymus function and of thymus-derived lymphocytes. Immunol Rev 185(1):7–14

    Article  CAS  PubMed  Google Scholar 

  5. Papavasiliou FN, Schatz DG (2002) Somatic hypermutation of immunoglobulin genes: merging mechanisms for genetic diversity. Cell 109(2):S35–S44

    Article  CAS  PubMed  Google Scholar 

  6. Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302(5909):575–581

    Article  CAS  PubMed  Google Scholar 

  7. Bourgeois C, Tanchot C (2003) Mini-review CD4 T cells are required for CD8 T cell memory generation. Eur J Immunol 33(12):3225–3231

    Article  CAS  PubMed  Google Scholar 

  8. Bonecchi R, Sozzani S, Stine JT, Luini W, D’Amico G et al (1998) Divergent effects of interleukin-4 and interferon-γ on macrophage-derived chemokine production: an amplification circuit of polarized T helper 2 responses. Blood, The Journal of the American Society of Hematology 92(8):2668–2671

    CAS  Google Scholar 

  9. Takahashi H, Amagai M, Tanikawa A, Suzuki S, Ikeda Y et al (2007) T helper type 2-biased natural killer cell phenotype in patients with pemphigus vulgaris. J Investig Dermatol 127(2):324–330

    Article  CAS  PubMed  Google Scholar 

  10. O’Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327(5969):1098–1102

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhang J-M, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45(2):27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu J, Paul WE (2010) Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev 238(1):247–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhu J, Yamane H, Paul WE (2009) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489

    Article  Google Scholar 

  14. Azizi G, Yazdani R, Mirshafiey A (2015) Th22 cells in autoimmunity: a review of current knowledge. Eur Ann Allergy Clin Immunol 47(4):108–117

    CAS  PubMed  Google Scholar 

  15. Lee HJ, Takemoto N, Kurata H, Kamogawa Y, Miyatake S et al (2000) GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 192(1):105–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Murphy E, Shibuya K, Hosken N, Openshaw P, Maino V et al (1996) Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J Exp Med 183(3):901–913

    Article  CAS  PubMed  Google Scholar 

  17. Zhou L, Lopes JE, Chong MMW, Ivanov II, Min R et al (2008) TGF-β-induced Foxp3 inhibits TH 17 cell differentiation by antagonizing RORγt function. Nature 453(7192):236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghoreschi K, Laurence A, Yang X-P, Tato CM, McGeachy MJ et al (2010) Generation of pathogenic TH 17 cells in the absence of TGF-β signalling. Nature 467(7318):967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lochner M, Peduto L, Cherrier M, Sawa S, Langa F et al (2008) In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J Exp Med 205(6):1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Antebi YE, Reich-Zeliger S, Hart Y, Mayo A, Eizenberg I et al (2013) Mapping differentiation under mixed culture conditions reveals a tunable continuum of T cell fates. PLoS Biol 11(7):e1001616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hegazy AN, Peine M, Helmstetter C, Panse I, Fröhlich A et al (2010) Interferons direct Th2 cell reprogramming to generate a stable GATA-3+ T-bet+ cell subset with combined Th2 and Th1 cell functions. Immunity 32(1):116–128

    Article  CAS  PubMed  Google Scholar 

  22. Voo KS, Wang Y-H, Santori FR, Boggiano C, Wang Y-H et al (2009) Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci 106(12):4793–4798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Peine M, Rausch S, Helmstetter C, Fröhlich A, Hegazy AN et al (2013) Stable T-bet+ GATA-3+ Th1/Th2 hybrid cells arise in vivo, can develop directly from naive precursors, and limit immunopathologic inflammation. PLoS Biol 11(8):e1001633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watanabe K, Panchy N, Noguchi S, Suzuki H, Hong T (2019) Combinatorial perturbation analysis reveals divergent regulations of mesenchymal genes during epithelial-to-mesenchymal transition. NPJ systems biology and applications 5(1):1–15

    Article  Google Scholar 

  25. Yamashita M, Kimura M, Kubo M, Shimizu C, Tada T et al (1999) T cell antigen receptor-mediated activation of the Ras/mitogen-activated protein kinase pathway controls interleukin 4 receptor function and type-2 helper T cell differentiation. Proc Natl Acad Sci 96(3):1024–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong T, Xing J, Li L, Tyson JJ (2011) A mathematical model for the reciprocal differentiation of T helper 17 cells and induced regulatory T cells. PLoS Comput Biol 7(7):e1002122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hong T, Xing J, Li L, Tyson JJ (2012) A simple theoretical framework for understanding heterogeneous differentiation of CD4+ T cells. BMC Syst Biol 6(1):66

    Article  PubMed  PubMed Central  Google Scholar 

  28. Schrom EC, Graham AL (2017) Instructed subsets or agile swarms: how T-helper cells may adaptively counter uncertainty with variability and plasticity. Curr Opin Genet Dev 47:75–82

    Article  CAS  PubMed  Google Scholar 

  29. Enver T, Pera M, Peterson C, Andrews PW (2009) Stem cell states, fates, and the rules of attraction. Cell Stem Cell 4(5):387–397

    Article  CAS  PubMed  Google Scholar 

  30. Mendoza L, Xenarios I (2006) A method for the generation of standardized qualitative dynamical systems of regulatory networks. Theor Biol Med Model 3(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hong T, Oguz C, Tyson JJ (2015) A mathematical framework for understanding four-dimensional heterogeneous differentiation of CD4+ T cells. Bull Math Biol 77(6):1046–1064

    Article  PubMed  PubMed Central  Google Scholar 

  32. Naldi A, Carneiro J, Chaouiya C, Thieffry D (2010) Diversity and plasticity of Th cell types predicted from regulatory network modelling. PLoS Comput Biol 6(9):e1000912

    Article  PubMed  PubMed Central  Google Scholar 

  33. Eizenberg-Magar I, Rimer J, Zaretsky I, Lara-Astiaso D, Reich-Zeliger S et al (2017) Diverse continuum of CD4+ T-cell states is determined by hierarchical additive integration of cytokine signals. Proc Natl Acad Sci 114(31):E6447–E6456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Willems, A., Hong, T. (2021). Fate Decisions of CD4+ T Cells. In: Kraikivski, P. (eds) Case Studies in Systems Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-67742-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67742-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67741-1

  • Online ISBN: 978-3-030-67742-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics