Skip to main content

Bike Assisted Evacuation on a Line

  • Conference paper
  • First Online:
SOFSEM 2021: Theory and Practice of Computer Science (SOFSEM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12607))

  • 1137 Accesses

Abstract

Two hikers and a bike are initially placed at the origin of an infinite line. When walking, the hikers can keep a constant speed of 1, but when riding the bike they can reach a constant speed \(v>1\) (same for both hikers). The hikers are modelled as autonomous mobile robots with communication capabilities (either in the wireless or face-to-face model) while the bike is not autonomous in that it cannot move on its own but instead it must be picked up by a hiker. An exit is placed on the line at distance d from the origin; the distance and direction of the exit from the origin is unknown to the hikers. The hikers may either walk or ride the bike however only one hiker may ride the bike at a time. The goal of the hikers is to evacuate from the exit in the minimum time possible as measured by the time it takes the last hiker to exit.

We develop algorithms for this “bike assisted” evacuation of the two hikers from an unknown exit on a line and analyze their evacuation time. In the wireless model we present three algorithms: in the first the robots move in opposite direction with max speed, in the second with a specially selected “optimal” speed, and in the third the hiker imitates the biker. We also give three algorithms in the Face-to-Face model: in the first algorithm the hiker pursues the biker, in the second the hiker and the biker use zig-zag algorithms with specially chosen expansion factors, and the third algorithm establishes a sequence a specially constructed meeting points near the exit. In either case, the optimality of these algorithms depends on \(v >1\). We also discuss lower bounds.

E. Kranakis—Research supported in part by NSERC Discovery grant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The present study is revised and updated from the first author’s MCS Thesis [15].

References

  1. Baeza Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Inf. Comput. 106(2), 234–252 (1993)

    Article  MathSciNet  Google Scholar 

  2. Bampas, E., et al.: Linear search by a pair of distinct-speed robots. Algorithmica 81(1), 317–342 (2019)

    Article  MathSciNet  Google Scholar 

  3. Beck, A.: On the linear search problem. Israel J. Math. 2(4), 221–228 (1964)

    Article  MathSciNet  Google Scholar 

  4. Bellman, R.: An optimal search. SIAM Rev. 5(3), 274 (1963)

    Article  Google Scholar 

  5. Chen, B., Pinelli, F., Sinn, M., Botea, A., Calabrese, F.: Uncertainty in urban mobility: predicting waiting times for shared bicycles and parking lots. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp. 53–58. IEEE (2013)

    Google Scholar 

  6. Chrobak, M., Gąsieniec, L., Gorry, T., Martin, R.: Group search on the line. In: Italiano, G.F., Margaria-Steffen, T., Pokorný, J., Quisquater, J.-J., Wattenhofer, R. (eds.) SOFSEM 2015. LNCS, vol. 8939, pp. 164–176. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46078-8_14

    Chapter  Google Scholar 

  7. Czyzowicz, J., Dobrev, S., Godon, M., Kranakis, E., Sakai, T., Urrutia, J.: Searching for a non-adversarial, uncooperative agent on a cycle. Theor. Comput. Sci. 806, 531–542 (2020). (also Algosensors 2017)

    Article  MathSciNet  Google Scholar 

  8. Czyzowicz, J., Dobrev, S., Kranakis, E., Krizanc, D.: The power of tokens: rendezvous and symmetry detection for two mobile agents in a ring. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 234–246. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77566-9_20

    Chapter  MATH  Google Scholar 

  9. Czyzowicz, J., Gąsieniec, L., Gorry, T., Kranakis, E., Martin, R., Pajak, D.: Evacuating robots via unknown exit in a disk. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 122–136. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_9

    Chapter  Google Scholar 

  10. Czyzowicz, J., et al.: The bike sharing problem (2020). https://arxiv.org/abs/2006.13241

  11. Czyzowicz, J., Georgiou, K., Kranakis, E.: Group search and evacuation. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, Current Research in Moving and Computing, vol. 11340, pp. 335–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_14

    Chapter  Google Scholar 

  12. Czyzowicz, J., et al.: Search on a line by byzantine robots. In: ISAAC, pp. 27:1–27:12 (2016)

    Google Scholar 

  13. Czyzowicz, J., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J.: Search on a line with faulty robots. In: PODC, pp. 405–414. ACM (2016)

    Google Scholar 

  14. Gąsieniec, L., Kijima, S., Min, J.: Searching with increasing speeds. In: Izumi, T., Kuznetsov, P. (eds.) SSS 2018. LNCS, vol. 11201, pp. 126–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03232-6_9

    Chapter  Google Scholar 

  15. Jawhar, K.: Bike assisted linear search and evacuation. MCS thesis, Carleton University, School of Computer Science (2020)

    Google Scholar 

  16. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: an optimal randomized algorithm for the cow-path problem. Inf. Comput. 131(1), 63–79 (1996)

    Article  MathSciNet  Google Scholar 

  17. Kranakis, E., Santoro, N., Sawchuk, C., Krizanc, D.: Mobile agent rendezvous in a ring. In: Proceedings of 23rd International Conference on Distributed Computing Systems, pp. 592–599. IEEE (2003)

    Google Scholar 

  18. Li, Z., Zhang, J., Gan, J., Lu, P., Gao, Z., Kong, W.: Large-scale trip planning for bike-sharing systems. Pervasive Mob. Comput. 54, 16–28 (2019)

    Article  Google Scholar 

  19. O’Mahony, E., Shmoys, D.B.: Data analysis and optimization for (citi) bike sharing. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  20. Pfrommer, J., Warrington, J., Schildbach, G., Morari, M.: Dynamic vehicle redistribution and online price incentives in shared mobility systems. IEEE Trans. Intell. Transp. Syst. 15(4), 1567–1578 (2014)

    Article  Google Scholar 

  21. Shaheen, S.A., Guzman, S., Zhang, H.: Bikesharing in Europe, the Americas, and Asia: past, present, and future. Transp. Res. Rec. 2143(1), 159–167 (2010)

    Article  Google Scholar 

  22. Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., Krause, A.: Incentivizing users for balancing bike sharing systems. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  23. Yang, Z., Hu, J., Shu, Y., Cheng, P., Chen, J., Moscibroda, T.: Mobility modeling and prediction in bike-sharing systems. In: Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services, pp. 165–178 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Kranakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jawhar, K., Kranakis, E. (2021). Bike Assisted Evacuation on a Line. In: Bureš, T., et al. SOFSEM 2021: Theory and Practice of Computer Science. SOFSEM 2021. Lecture Notes in Computer Science(), vol 12607. Springer, Cham. https://doi.org/10.1007/978-3-030-67731-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67731-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67730-5

  • Online ISBN: 978-3-030-67731-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics