Skip to main content

Summary

Hyperoxaluria is one of the most important promoters of crystallization, which might induce a chronic inflammatory process if crystals are internalized in the tubular system, leading later to early end-stage renal failure (Kurts. Kidney Int. 2013;84(5):859–61; Beck et al. Pediatric kidney disease. New York: Elsevier/WB Saunders; pp. 1037–58). Urinary oxalate is mostly of endogenous origin, and only ~10% derive from the daily nutritional intake (Whittamore et al. Am J Physiol Gastrointest Liver Physiol. 2019;316(1):G82–94). Primary causes are distinguished from secondary ones: The autosomal recessive inherited primary hyperoxaluria (PH) types I, II, and III are defects of the glyoxylate metabolism leading to endogenous (primary) overproduction of oxalate (Hoppe. Nat Rev Nephrol. 2012;8(8):467–75; Belostotsky et al. Am J Hum Genet. 2010;87(3):392–9). A significant number of hyperoxaluric patients, who would classify for PH, have yet unknown genetic basis of disease; thus, further types of PH are likely to exist (unclassified PH). Urinary excretion of oxalate is strongly elevated (>1 mmol/1.73 m2 BSA/day, normal <0.5) in all forms of PH, resulting in recurrent stone formation and/or nephrocalcinosis and in progressive kidney damage leading to systemic calcium oxalate deposition (systemic oxalosis), primarily in PH type I (100%), but also in PH II (50%). Systemic oxalosis in PH I is a catastrophic situation that must be prevented by all means. Yet, diagnosis is all too often missed or delayed until end-stage renal failure occurs (in more than one third of adult patients). This is particularly unfortunate because progressive renal damage can be delayed or even prevented by early intervention (Garrelfs et al. N Engl J Med. 2021;384(13):1216–26; Weigert et al. 2018;23(4):349–57). Secondary hyperoxaluria is due either to excessive oxalate or vitamin C intake (dietary hyperoxaluria), the latter being metabolized to oxalate, or to increased intestinal oxalate absorption (enteric, mostly based on chronic inflammatory bowel syndromes, Hoppe et al. Front Biosci. 2003;8:e437–43). Although the urinary oxalate excretion is usually <1 mmol/1.73 m2 BSA/24 h, it may nevertheless lead to significant morbidity, i.e., to recurrent urolithiasis or progressive nephrocalcinosis with renal failure, especially in patients with Crohn's disease and ileocecal valve resections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amin R, Asplin J, Jung D, Bashir M, Alshaikh A, Ratakonda S, Sharma S, Jeon S, Granja I, Matern D, Hassan H. Reduced active transcellular intestinal oxalate secretion contributes to the pathogenesis of obesity-associated hyperoxaluria. Kidney Int. 2018;93(5):1098–107.

    Google Scholar 

  • Beck et al. Pediatric kidney disease. New York: Elsevier/WB Saunders; 2016. pp. 1037–58.

    Google Scholar 

  • Belostotsky R, Seboun E, Idelson GH, Milliner DS, Becker-Cohen R, Rinat C, Monico CG, Feinstein S, Ben-Shalom E, Magen D, Weissman I, Charon C, Frishberg Y. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet. 2010;87(3):392–9.

    Google Scholar 

  • Clifford-Mobley O, Rumsby G, Kanodia S, Didi M, Holt R, Senniappan S. Glycolate oxidase deficiency in a patient with congenital hyperinsulinism and unexplained hyperoxaluria. Pediatr Nephrol. 2017;32(11):2159–63.

    Google Scholar 

  • Cochat P, Hulton SA, Acquaviva C, Danpure CJ, Daudon M, De Marchi M, Fargue S, Groothoff J, Harambat J, Hoppe B, Jamieson NV, Kemper MJ, Mandrile G, Marangella M, Picca S, Rumsby G, Salido E, Straub M, van Woerden CS, OxalEurope. Primary hyperoxaluria Type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant. 2012;27(5):1729–36.

    Article  CAS  Google Scholar 

  • Coenen M, Schalk G, Cochat P, et al. PHYOX3: A long term, open-label extension trial of nedosiran in patients with primary hyperoxaluria type 1, 2, or 3 (abstract). J Am Soc Nephrol 31. 2020;515.

    Google Scholar 

  • Cregeen DP, Williams EL, Hulton S, Rumsby G. Molecular analysis of the glyoxylate reductase (GRHPR) gene and description of mutations underlying primary hyperoxaluria type 2. Hum Mutat. 2003;22(6):497.

    Google Scholar 

  • Danpure CJ, Cooper PJ, Wise PJ, Jennings PR. An enzyme trafficking defect in two patients with primary hyperoxaluria type 1: peroxisomal alanine/glyoxylate aminotransferase rerouted to mitochondria. J Cell Biol. 1989;108(4):1345–52.

    Article  CAS  Google Scholar 

  • Dawson PA, et al. Urolithiasis and hepatotoxicity are linked to the anion transporter Sat1 in mice. J Clin Invest. 2010;120(3):706–12.

    Article  CAS  Google Scholar 

  • Dhondup T, Lorenz EC, Milliner DS, Lieske JC. Combined liver-kidney transplantation for primary hyperoxaluria type 2: a case report. Am J Transplant. 2018;18(1):253–7.

    Google Scholar 

  • Dutta C, Avitahl-Curtis N, Pursell N, Larsson Cohen M, Holmes B, Diwanji R, Zhou W, Apponi L, Koser M, Ying B, Chen D, Shui X, Saxena U, Cyr WA, Shah A, Nazef N, Wang W, Abrams M, Dudek H, Salido E, Brown BD, Lai C. Inhibition of glycolate oxidase with dicer-substrate siRNA reduces calcium oxalate deposition in a mouse model of primary hyperoxaluria type 1. Mol Ther. 2016;24(4):770–8.

    Google Scholar 

  • Frishberg Y, Zeharia A, Lyakhovetsky R, Bargal R, Belostotsky R. Mutations in HAO1 encoding glycolate oxidase cause isolated glycolic aciduria. J Med Genet. 2014;51(8):526–9.

    Google Scholar 

  • Garrelfs SF, Frishberg Y, Hulton SA, Koren MJ, O’Riordan WD, Cochat P, Deschênes G, Shasha-Lavsky H, Saland JM, Van’t Hoff WG, Fuster DG, Magen D, Moochhala SH, Schalk G, Simkova E, Groothoff JW, Sas DJ, Meliambro KA, Lu J, Sweetser MT, Garg PP, Vaishnaw AK, Gansner JM, McGregor TL, Lieske JC. ILLUMINATE-A Collaborators. Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. N Engl J Med. 2021;384(13):1216–26.

    Google Scholar 

  • Garrelfs SF, Rumsby G, Peters-Sengers H, Erger F, Groothoff JW, Beck BB, Oosterveld MJS, Pelle A, Neuhaus T, Adams B, Cochat P, Salido E, Lipkin GW, Hoppe B, Hulton SA, OxalEurope Consortium. Patients with primary hyperoxaluria type 2 have significant morbidity and require careful follow-up. Kidney Int. 2019;96(6):1389–99.

    Google Scholar 

  • Hueppelshaeuser R, von Unruh GE, Habbig S, Beck BB, Buderus S, Hesse A, Hoppe B. Enteric hyperoxaluria, recurrent urolithiasis, and systemic oxalosis in patients with Crohn’s disease. Pediatr Nephrol. 2012;27(7):1103–9.

    Google Scholar 

  • Hopp K, Cogal AG, Bergstralh EJ, Seide BM, Olson JB, Meek AM, Lieske JC, Milliner DS, Harris PC. Rare kidney stone consortium. Phenotype-genotype correlations and estimated carrier frequencies of primary hyperoxaluria. J Am Soc Nephrol. 2015;26(10):2559-70. 2

    Article  Google Scholar 

  • Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012;8(8):467–75.

    Google Scholar 

  • Hoppe B, Beck B, Gatter N, von Unruh G, Tischer A, Hesse A, Laube N, Kaul P, Sidhu H. Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int. 2006;70(7):1305–11.

    Article  CAS  Google Scholar 

  • Hoppe B, Cochat P, Lemoine S, Lipkin G, Gentile AM, Brown BD, Rosskamp R, Hulton S, Groothoff JW, Baum MA. PHYOX: A Safety and Tolerability Study of DCR-PHXC in Primary Hyperoxaluria Types 1 and 2 and outlook of future studies. Abstract GPN 2020.

    Google Scholar 

  • Hoppe B, Kemper MJ, Bökenkamp A, Portale AA, Cohn RA, Langman CB. Plasma calcium-oxalate supersaturation in children with primary hyperoxaluria and end-stage renal failure. Kidney Int. 1999;56(1):268–74.

    Article  CAS  Google Scholar 

  • Hoppe B, Leumann E, von Unruh G, Laube N, Hesse A. Diagnostic and therapeutic approaches in patients with secondary hyperoxaluria. Front Biosci. 2003;8:e437–43.

    Google Scholar 

  • Hoppe B, Leumann E, Milliner D. Urolithiasis in childhood. In: Geary D, Schäfer F, editors. Comprehensive Pediatric nephrology. New York: Elsevier/WB Saunders; 2008. p. 499–525.

    Chapter  Google Scholar 

  • Hoppe B, Niaudet P, Salomon R, Harambat J, Hulton SA, Van't Hoff W, Moochhala SH, Deschênes G, Lindner E, Sjögren A, Cochat P. A randomised phase I/II trial to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Pediatr Nephrol. 2017;32(5):781–90.

    Google Scholar 

  • Hoyer-Kuhn H, Kohbrok S, Volland R, Franklin J, Hero B, Beck BB, Hoppe B. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol. 2014;9(3):468–77.

    Article  Google Scholar 

  • Jamieson NV. A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PH1): the European PH1 transplant registry experience 1984-2004. Am J Nephrol. 2005;25(3):282–9. European PHI Transplantation Study Group; Epub 2005 Jun 15

    Article  Google Scholar 

  • Knauf F, Ko N, Jiang Z, Robertson WG, Van Itallie CM, Anderson JM, Aronson PS. Net intestinal transport of oxalate reflects passive absorption and SLC26A6-mediated secretion. J Am Soc Nephrol. 2011;22(12):2247–55.

    Article  CAS  Google Scholar 

  • Knauf F, Velazquez H, Pfann V, Jiang Z, Aronson PS. Characterization of renal NaCl and oxalate transport in Slc26a6. Am J Physiol Renal Physiol. 2019;316(1):F128–33.

    Article  CAS  Google Scholar 

  • Ko N, Knauf F, Jiang Z, Markovich D, Aronson PS. Sat1 is dispensable for active oxalate secretion in mouse duodenum. Am J Physiol Cell Physiol. 2012;303(1):C52–7.

    Google Scholar 

  • Kukreja A, Lasaro M, Cobaugh C, Forbes C, Tang JP, Gao X, Martin-Higueras C, Pey AL, Salido E, Sobolov S, Subramanian RR. Systemic alanine Glyoxylate aminotransferase mRNA improves Glyoxylate metabolism in a mouse model of primary Hyperoxaluria type 1. Nucleic Acid Ther. 2019;29(2):104–13.

    Google Scholar 

  • Kurts C. A crystal-clear mechanism of chronic kidney disease. Kidney Int. 2013;84(5):859–61.

    Google Scholar 

  • Lai C, Pursell N, Gierut J, Saxena U, Zhou W, Dills M, Diwanji R, Dutta C, Koser M, Nazef N, Storr R, Kim B, Martin-Higueras C, Salido E, Wang W, Abrams M, Dudek H, Brown BD. Specific inhibition of hepatic lactate dehydrogenase reduces oxalate production in mouse models of primary hyperoxaluria. Mol Ther. 2018;26(8):1983–95.

    Google Scholar 

  • Langman CB, Grujic D, Pease RM, Easter L, Nezzer J, Margolin A, Brettman L. A double-blind, placebo controlled, randomized phase 1 cross-over study with ALLN-177, an orally administered oxalate degrading enzyme. Am J Nephrol. 2016;44(2):150–8.

    Google Scholar 

  • Le Dudal M, Huguet L, Perez J, Vandermeersch S, Bouderlique E, Tang E, Martori C, Chemaly N, Nabbout R, Haymann JP, Frochot V, Baud L, Deschênes G, Daudon M, Letavernier E. Stiripentol protects against calcium oxalate nephrolithiasis and ethylene glycol poisoning. J Clin Invest. 2019;129(6):2571–7.

    Google Scholar 

  • Leumann EP, Dietl A, Matasovic A. Urinary oxalate and glycolate excretion in healthy infants and children. Pediatr Nephrol. 2016;4:493–7.

    Google Scholar 

  • Liebow A, Li X, Racie T, Hettinger J, Bettencourt BR, Najafian N, Haslett P, Fitzgerald K, Holmes RP, Erbe D, Querbes W, Knight J. An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J Am Soc Nephrol. 2017;28(2):494–503.

    Google Scholar 

  • Lieske JC, Lingeman JE, Ferraro PM, Zhang Z,Kausz AT. A phase 3, randomized, placebo-controlled trial of reloxaliase in enteric hyperoxaluria (URIROX-1): clinical characteristics and burden of illness. ASN abstract 2019.

    Google Scholar 

  • Mandrile G, van Woerden CS, Berchialla P, Beck BB, Acquaviva Bourdain C, Hulton SA, Rumsby G, OxalEurope Consortium. Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney Int. 2014;86(6):1197–204.

    Google Scholar 

  • Marangella M, Petrarulo M, Vitale C, Cosseddu D, Linari F. Plasma and urine glycolate assays for differentiating the hyperoxaluria syndromes. J Urol. 1992;148:986–9.

    Article  CAS  Google Scholar 

  • Martin-Higueras C, Luis-Lima S, Salido E. Glycolate oxidase is a safe and efficient target for substrate reduction therapy in a mouse model of primary hyperoxaluria type I. Mol Ther. 2016;24(4):719–25.

    Google Scholar 

  • Milliner DS, Eickholt JT, Bergstralh EJ, Wilson DM, Smith LH. Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N Engl J Med. 1994;331(23):1553-8.

    Google Scholar 

  • Monico CG, Rossetti S, Belostotsky R, Cogal AG, Herges RM, Seide BM, Olson JB, Bergstrahl EJ, Williams HJ, Haley WE, Frishberg Y, Milliner DS. Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol. 2011;6(9):2289–95.

    Google Scholar 

  • Nolkemper D, Kemper MJ, Burdelski M, Vaismann I, Rogiers X, Broelsch CE, Ganschow R, Müller-Wiefel DE. Long-term results of pre-emptive liver transplantation in primary hyperoxaluria type 1. Pediatr Transplant. 2000;4(3):177–81.

    Article  CAS  Google Scholar 

  • Purdue PE, Allsop J, Isaya G, Rosenberg LE, Danpure CJ. Mistargeting of peroxisomal L-alanine:glyoxylate aminotransferase to mitochondria in primary hyperoxaluria patients depends upon activation of a cryptic mitochondrial targeting sequence by a point mutation. Proc Natl Acad Sci U S A. 1991;88(23):10900–4.

    Article  CAS  Google Scholar 

  • Richard E, Blouin JM, Harambat J, Llanas B, Bouchet S, Acquaviva C, de la Faille R. Late diagnosis of primary hyperoxaluria type III. Ann Clin Biochem. 2017;54(3):406–11.

    Google Scholar 

  • Robijn S, Hoppe B, Vervaet BA, D'Haese PC, Verhulst A. Hyperoxaluria: a gut-kidney axis? Kidney Int. 2011;80(11):1146–58.

    Google Scholar 

  • Salido E, Rodriguez-Pena M, Santana A, Beattie SG, Petry H, Torres A. Phenotypic correction of a mouse model for primary hyperoxaluria with adeno-associated virus gene transfer. Mol Ther. 2011;19(5):870–5.

    Google Scholar 

  • Shrikant RM, Jonathan NE, Jyaysi D, Julian AM, Santhosh VRK, Marc W, Melissa G, Maciej L, Nuru E, Lisa M, Wolfgang H, Martin H de Angelis, Volker V, Hoppe B, Asplin J, Burzlaff N, Herrmann M, Evan A, Anders H.-J. Hyperoxaluria requires TNF receptors to initiate crystal adhesion and kidney stone disease. J Am Soc Nephrol. 2017;28(3):761–68.

    Google Scholar 

  • van Woerden CS, Groothoff JW, Wanders RJ, Davin JC, Wijburg FA. Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrol Dial Transplant. 2003;18(2):273–9.

    Google Scholar 

  • Ventzke A, Feldkötter M, Wei A, Becker J, Beck BB, Hoppe B. Systematic assessment of urinary hydroxy-oxo-glutarate for diagnosis and follow-up of primary hyperoxaluria type III. Pediatr Nephrol. 2017;32(12):2263–71. (2018)

    Article  Google Scholar 

  • Weigert A, Martin-Higueras C, Hoppe B. Novel therapeutic approaches in primary hyperoxaluria. Expert Opin Emerg Drugs. 2018;23(4):349–57.

    Google Scholar 

  • Whittamore JM, Stephens CE, Hatch M. Absence of the sulfate transporter SAT-1 has no impact on oxalate handling by mouse intestine and does not cause hyperoxaluria or hyperoxalemia. Am J Physiol Gastrointest Liver Physiol. 2019;316(1):G82–94.

    Article  CAS  Google Scholar 

  • Zhao F, Bergstralh EJ, Mehta RA, Vaughan LE, Olson JB, Seide BM, Meek AM, Cogal AG, Lieske JC, Milliner DS. Investigators of Rare Kidney Stone Consortium. Predictors of Incident ESRD among patients with primary hyperoxaluria presenting prior to kidney failure. Clin J Am Soc Nephrol. 2016;11(1):119–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hoppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hoppe, B., Beck, B.B., Martin-Higueras, C. (2022). Disorders of Oxalate Metabolism. In: Blau, N., Dionisi Vici, C., Ferreira, C.R., Vianey-Saban, C., van Karnebeek, C.D.M. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-67727-5_67

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67727-5_67

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67726-8

  • Online ISBN: 978-3-030-67727-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics