Skip to main content

Software Defined Unicast/Multicast Jointed Routing for Real-Time Data Distribution

Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST,volume 352)

Abstract

The explosive increasing of high bandwidth-consumption traffic puts great pressure on the Internet. Many popular applications springing up work in a manner of one-to-many or many-to-many communication, such as TikTok, Instagram, Tencent conference, and numbers of interactive games. Due to the scalability and applicability problems, existing multicast schemes, e.g. IP multicast, are not widely implemented. Instead, most of those traffic is transmitted through the Internet in unicast, which results in vast redundant traffic in backbone networks. In this paper, we propose a unicast/multicast jointed routing mechanism in software defined networks, SDUM. We devote to achieve unicast data distribution following a dynamic multicast tree, which is managed by centralized control and application plane. Other than OpenFlow protocol, this mechanism doesn’t require any specific multicast protocols or software. The network can be a virtualized network with distributed OpenFlow devices interconnected by legacy routers. The evaluation results confirm the efficiency of the proposal in the number of control messages, signaling overhead, occupation of flow table entries, and qualitative comparison.

Keywords

  • Multicast algorithm
  • Data manipulation
  • Group management
  • Software defined networking

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-67720-6_16
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-67720-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

References

  1. Diot, C., Levine, B.N., Lyles, B., Kassem, H., Balensiefen, D.: Deployment issues for the IP multicast service architecture. IEEE Netw. 14(1), 78–88 (2000)

    CrossRef  Google Scholar 

  2. Park, J., Lee, J.M., Kang, S.: Design implementation of overlay multicast protocol for many-to-many multicast services, In: The 9th International Conference on Advanced Communication Technology, pp. 2144–2147, Okamoto, Kobe. IEEE (2007)

    Google Scholar 

  3. Nunes, B.A.A., Mendonca, M., Nguyen, X.-N., Obraczka, K., Turletti, T.: A survey of software-defined networking: past, present, future of programmable networks. IEEE Commun. Surv. Tutor. 16(3), 1617–1634 (2014)

    CrossRef  Google Scholar 

  4. Chiang, S., Kuo, J., Shen, S., Yang, D., Chen, W.: Online multicast traffic engineering for software-defined networks, In: Proceedings of IEEE INFOCOM, Honolulu, HI, pp. 414–422 (2018)

    Google Scholar 

  5. Waitzman, D., Partridge, C., Deering, S.E.: Distance vector multicast routing protocol, IETF RFC 1075 (Experimental) (1988)

    Google Scholar 

  6. Moy, J.: Multicast extensions to OSPF, IETF RFC 1584 (1994)

    Google Scholar 

  7. Fenner, B., et al.: Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Specification (Revised), IETF RFC 7761 (2016)

    Google Scholar 

  8. Speakman, T., Vicisano, L., Handley, M.J., Kouvelas, I.: Bidirectional protocol independent multicast (BIDIR-PIM), IETF RFC 5015 (2007)

    Google Scholar 

  9. Almeroth, K.C.: The evolution of multicast: from the MBone to interdomain multicast to Internet2 deployment. IEEE Netw. 14(1), 10–20 (2000)

    CrossRef  Google Scholar 

  10. Yatin, C.: Scattercast: an adaptable broadcast distribution framework. Multimedia Syst. 9, 104–118 (2003)

    CrossRef  Google Scholar 

  11. Jannotti, J., Gfford, D.K., Johnson, K.L., Kaashoek, M.F., O’Toole, J.W.: Overcast: reliable multicasting with an overlay network. In: Proceedings of the 4th Conference on Symposium on Operating System Design & Implementation, San Diego, CA, pp. 197–212. Usenix (2000)

    Google Scholar 

  12. Zhang, J., Liu, L., Ramaswamy, L., Pu, C.: PeerCast: churn-resilient end system multicast on heterogeneous overlay networks. J. Netw. Comput. Appl. 31(4), 821–850 (2008)

    CrossRef  Google Scholar 

  13. Hua, K.A., Tran, D.A., Villafane, R.: Overlay multicast for video on demon the internet. In: Proceedings of the 2003 ACM Symposium on Applied Computing, Melbourne, Florida, pp. 935–942. Association for Computing Machinery (2003)

    Google Scholar 

  14. Bondan, L., Müller, L.F., Kist, M.: Multiflow: multicast clean-slate with anticipated route calculation on OpenFlow programmable networks. J. Appl. Comput. Res. 2(2), 68–74 (2012)

    Google Scholar 

  15. Liao, S., Wu, C., Hong, X., Zhu, K., Chen, S.: Virtualized platform for multicast services in software defined networks. Chin. J. Electron. 26(3), 453–459 (2017)

    CrossRef  Google Scholar 

  16. Yu, Y., Zhen, Q., Xin, L., Shanzhi, C.: OFM: a novel multicast mechanism based on Openflow. Adv. Inf. Sci. Serv. Sci. 4(9), 278–286 (2012)

    Google Scholar 

  17. Lin, Y.-D., Lai, Y.-C., Teng, H.-Y., Liao, C.-C., Kao, Y.-C.: Scalable multicasting with multiple shared trees in software defined networking. J. Netw. Comput. Appl. 78, 125–133 (2017)

    CrossRef  Google Scholar 

  18. Huang, L.-H., Hung, H.-J., Lin, C.-C., Yang, D.-N.: Scalable bandwidth-efficient multicast for software-defined networks. In: Proceedings of 2014 IEEE GLOBECOM, Austin, TX, USA, pp. 1890–1896. IEEE (2014)

    Google Scholar 

  19. Rückert, J., Blendin, J., Hausheer, D.: Software-defined multicast for over-the-top overlay-based live streaming in ISP networks. J. Netw. Syst. Manag. 23(2), 280–308 (2015)

    CrossRef  Google Scholar 

  20. Islam, S., Muslim, N., Atwood, J.W.: A survey on multicasting in software-defined networking. IEEE Commun. Surv. Tutor. 20(1), 355–387 (2018)

    CrossRef  Google Scholar 

  21. Alsaeedi, M., Mohamad, M.M., Al-Roubaiey, A.A.: Toward adaptive scalable OpenFlow-SDN flow control: a survey. IEEE Access 7, 107346–107379 (2019)

    CrossRef  Google Scholar 

  22. Priya, A.V., Radhika, N.: Performance comparison of SDN OpenFlow controllers. Int. J. Comput. Aided Eng. Technol. 11(4/5), 467–479 (2019)

    CrossRef  Google Scholar 

  23. Bannour, F., Souihi, S., Mellouk, A.: Distributed SDN control: survey, taxonomy, challenges. IEEE Commun. Surv. Tutor. 20(1), 333–354 (2018)

    CrossRef  Google Scholar 

  24. Asadollahi, S., Goswami, B., Sameer, M.: Ryu controller’s scalability experiment on software defined networks. In: Proceedings of 2018 IEEE International Conference on Current Trends in Advanced Computing (ICCTAC), Bangalore, India. IEEE (2018)

    Google Scholar 

  25. Mišić, M.J., Gajin, S.R.: Simulation of software defined networks in Mininet environment. In: Proceedings of 2014 22nd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, pp. 1055–1058. IEEE (2014)

    Google Scholar 

  26. Medina, A., Lakhina, A., Matta, I., Byers, J.: BRITE: an approach to universal topology generation. In: Proceedings of Proceedings Ninth International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems, Cincinnati, OH, USA, pp. 346–353. IEEE (2001)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Science and Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2017KJ090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Sun, S., Huang, W., Zhang, X., Han, L. (2021). Software Defined Unicast/Multicast Jointed Routing for Real-Time Data Distribution. In: Gao, H., Fan, P., Wun, J., Xiaoping, X., Yu, J., Wang, Y. (eds) Communications and Networking. ChinaCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 352. Springer, Cham. https://doi.org/10.1007/978-3-030-67720-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67720-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67719-0

  • Online ISBN: 978-3-030-67720-6

  • eBook Packages: Computer ScienceComputer Science (R0)