Skip to main content

Learning to Simulate on Sparse Trajectory Data

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12460))

Abstract

Simulation of the real-world traffic can be used to help validate the transportation policies. A good simulator means the simulated traffic is similar to real-world traffic, which often requires dense traffic trajectories (i.e., with high sampling rate) to cover dynamic situations in the real world. However, in most cases, the real-world trajectories are sparse, which makes simulation challenging. In this paper, we present a novel framework ImIn-GAIL to address the problem of learning to simulate the driving behavior from sparse real-world data. The proposed architecture incorporates data interpolation with the behavior learning process of imitation learning. To the best of our knowledge, we are the first to tackle the data sparsity issue for behavior learning problems. We investigate our framework on both synthetic and real-world trajectory datasets of driving vehicles, showing that our method outperforms various baselines and state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.openstreetmap.org.

References

  1. Abbeel, P., Ng, A.Y.: Apprenticeship learning via inverse reinforcement learning. In: ICML (2004)

    Google Scholar 

  2. Asamer, J., van Zuylen, H.J., Heilmann, B.: Calibrating car-following parameters for snowy road conditions in the microscopic traffic simulator VISSIM. IET Intell. Transp. Syst. 7(1), 114–121 (2013)

    Article  Google Scholar 

  3. Bhattacharyya, R.P., Phillips, D.J., Wulfe, B., Morton, J., Kuefler, A., Kochenderfer, M.J.: Multi-agent imitation learning for driving simulation. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2018)

    Google Scholar 

  4. Ho, J., Ermon, S.: Generative adversarial imitation learning. In: NeurIPS (2016)

    Google Scholar 

  5. Kesting, A., Treiber, M.: Calibrating car-following models by using trajectory data: methodological study. Transp. Res. Rec. 2088(1), 148–156 (2008)

    Article  Google Scholar 

  6. Krajzewicz, D., Erdmann, J., Behrisch, M., Bieker, L.: Recent development and applications of SUMO - Simulation of Urban MObility. Int. J. Adv. Syst. Meas. 5(3&4), 128–138 (2012)

    Google Scholar 

  7. Krauss, S.: Microscopic modeling of traffic flow: investigation of collision free vehicle dynamics. Ph.D. thesis (1998)

    Google Scholar 

  8. Kuefler, A., Morton, J., Wheeler, T., Kochenderfer, M.: Imitating driver behavior with generative adversarial networks. In: IEEE Intelligent Vehicles Symposium (IV). IEEE (2017)

    Google Scholar 

  9. Leutzbach, W., Wiedemann, R.: Development and applications of traffic simulation models at the Karlsruhe Institut fur Verkehrwesen. Traffic Eng. Control 27(5), 270–278 (1986)

    Google Scholar 

  10. Li, S.C.X., Marlin, B.M.: A scalable end-to-end gaussian process adapter for irregularly sampled time series classification. In: NeurIPS (2016)

    Google Scholar 

  11. Liu, Y., Zhao, K., Cong, G., Bao, Z.: Online anomalous trajectory detection with deep generative sequence modeling. In: ICDE (2020)

    Google Scholar 

  12. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for low-sampling-rate GPS trajectories. In: SIGSPATIAL. ACM (2009)

    Google Scholar 

  13. Michie, D., Bain, M., Hayes-Miches, J.: Cognitive models from subcognitive skills. IEEE Control Eng. Ser. 44 (1990)

    Google Scholar 

  14. Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. de Physique I 2(12), 2221–2229 (1992)

    Google Scholar 

  15. Ng, A.Y., Russell, S.J., et al.: Algorithms for inverse reinforcement learning. In: ICML (2000)

    Google Scholar 

  16. Osorio, C., Punzo, V.: Efficient calibration of microscopic car-following models for large-scale stochastic network simulators. Transp. Res. Part B: Methodol. 119, 156–173 (2019)

    Article  Google Scholar 

  17. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust region policy optimization. In: ICML (2015)

    Google Scholar 

  18. Song, J., Ren, H., Sadigh, D., Ermon, S.: Multi-agent generative adversarial imitation learning. In: NeurIPS (2018)

    Google Scholar 

  19. Sugiyama, Y., et al.: Traffic jams without bottlenecks-experimental evidence for the physical mechanism of the formation of a jam. New J. Phys. 10(3), 1–8 (2008)

    Article  Google Scholar 

  20. Tang, X., et al.: Joint modeling of dense and incomplete trajectories for citywide traffic volume inference. In: The World Wide Web Conference. ACM (2019)

    Google Scholar 

  21. Torabi, F., Warnell, G., Stone, P.: Behavioral cloning from observation. In: IJCAI (2018)

    Google Scholar 

  22. Wei, H., et al.: PressLight: learning max pressure control to coordinate traffic signals in arterial network. In: KDD (2019)

    Google Scholar 

  23. Wei, H., et al.: CoLight: learning network-level cooperation for traffic signal control. In: CIKM (2019)

    Google Scholar 

  24. Wei, H., Zheng, G., Gayah, V., Li, Z.: A survey on traffic signal control methods. arXiv preprint arXiv:1904.08117 (2019)

  25. Wei, H., Zheng, G., Yao, H., Li, Z.: IntelliLight: a reinforcement learning approach for intelligent traffic light control. In: KDD (2018)

    Google Scholar 

  26. Wu, C., Kreidieh, A., Vinitsky, E., Bayen, A.M.: Emergent behaviors in mixed-autonomy traffic. In: Conference on Robot Learning (2017)

    Google Scholar 

  27. Wu, Y., Tan, H., Ran, B.: Differential variable speed limits control for freeway recurrent bottlenecks via deep reinforcement learning. arXiv preprint arXiv:1810.10952 (2018)

  28. Yi, X., Zheng, Y., Zhang, J., Li, T.: ST-MVL: filling missing values in geo-sensory time series data. In: IJCAI. AAAI Press (2016)

    Google Scholar 

  29. Zhang, H., et al.: CityFlow: a multi-agent reinforcement learning environment for large scale city traffic scenario. In: International World Wide Web Conference (2019)

    Google Scholar 

  30. Zheng, G., Liu, H., Xu, K., Li, Z.: Learning to simulate vehicle trajectories from demonstrations. In: ICDE (2020)

    Google Scholar 

  31. Zheng, K., Zheng, Y., Xie, X., Zhou, X.: Reducing uncertainty of low-sampling-rate trajectories. In: ICDE (2012)

    Google Scholar 

  32. Zheng, Y.: Trajectory data mining: an overview. ACM Trans. Intell. Syst. Technol. (TIST) 6(3), 1–41 (2015)

    Article  Google Scholar 

  33. Ziebart, B.D., Maas, A.L., Bagnell, J.A., Dey, A.K.: Maximum entropy inverse reinforcement learning. In: AAAI, vol. 8 (2008)

    Google Scholar 

Download references

Acknowledgments

The work was supported in part by NSF awards #1652525 and #1618448. The views and conclusions contained in this paper are those of the authors and should not be interpreted as representing any funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, H., Chen, C., Liu, C., Zheng, G., Li, Z. (2021). Learning to Simulate on Sparse Trajectory Data. In: Dong, Y., Mladenić, D., Saunders, C. (eds) Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12460. Springer, Cham. https://doi.org/10.1007/978-3-030-67667-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67667-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67666-7

  • Online ISBN: 978-3-030-67667-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics