Skip to main content

Real-Time Fine-Grained Freeway Traffic State Estimation Under Sparse Observation

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12457))

Abstract

Obtaining sufficient traffic state (e.g. traffic flow, density, and speed) data is critical for effective traffic operation and control. Especially for emerging advanced traffic applications, fine-grained traffic state estimation is non-trivial. With the development of advanced sensing and communication technology, connected vehicles provide unprecedented opportunities to sense traffic state and change current estimation methods. However, due to the low penetration rate of connected vehicles, traditional traffic state estimation methods do not work well under fine-grained requirements. To overcome such a problem, a probabilistic approach to estimate fine-grained traffic state of freeway under sparse observation is proposed in this paper. Specifically, we propose Residual Attention Conditional Neural Process (RA-CNP), which is an approximation of Gaussian Processes Regression (GPR) using neural network, to model spatiotemporally varying traffic states. The method can comprehensively extract both constant spatial-temporal and dynamic traffic state dependency from sparse data and have better estimation accuracy. Besides, the proposed method has less computational cost compared with traditional GPR, which makes it applicable to real-time traffic estimation applications. Extensive experiments using real-world traffic data show that the proposed method provides lower estimation error and more reliable results than other traditional traffic estimation methods under sparse observation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bekiarisliberis, N., Roncoli, C., Papageorgiou, M.: Highway traffic state estimation with mixed connected and conventional vehicles. IEEE Trans. Intell. Transport. Syst. 17(12), 3484–3497 (2016)

    Article  Google Scholar 

  2. Chen, C., Varaiya, P.: Freeway performance measurement system (pems). PATH Research Report (2002)

    Google Scholar 

  3. Daganzo, C.F.: The cell transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transport. Res. Part B-Methodol. 28(4), 269–287 (1994)

    Article  Google Scholar 

  4. Datta, A., Banerjee, S., Finley, A.O., Gelfand, A.E.: Hierarchical nearest-neighbor gaussian process models for large geostatistical datasets. J. Am. Stat. Assoc. 111(514), 800–812 (2016)

    Article  MathSciNet  Google Scholar 

  5. Eslami, S.M.A., et al.: Neural scene representation and rendering. Science 360(6394), 1204–1210 (2018)

    Article  Google Scholar 

  6. Fu, R., Zhang, Z., Li, L.: Using LSTM and GRU neural network methods for traffic flow prediction 2016, 324–328 (2016)

    Google Scholar 

  7. Garnelo, M., et al.: Conditional neural processes. arXiv: Learning (2018)

  8. Han, Y., Chen, D., Ahn, S.: Variable speed limit control at fixed freeway bottlenecks using connected vehicles. Transport. Res. Part B-Methodol. 98, 113–134 (2017)

    Article  Google Scholar 

  9. Hastie, T., Tibshirani, R., Friedman, J.H.: The elements of statistical learning: data mining, inference, and prediction. Math. Intell. 27(2), 83–85 (2005)

    Article  MATH  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Houenou, A., Bonnifait, P., Cherfaoui, V., Yao, W.: Vehicle trajectory prediction based on motion model and maneuver recognition, pp. 4363–4369 (2013)

    Google Scholar 

  12. Ide, T., Kato, S.: Travel-time prediction using gaussian process regression: a trajectory-based approach, pp. 1185–1196 (2009)

    Google Scholar 

  13. Kim, H., et al.: Attentive neural processes (2019)

    Google Scholar 

  14. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. arXiv: Learning (2017)

  15. Nantes, A., Ngoduy, D., Bhaskar, A., Miska, M., Chung, E.: Real-time traffic state estimation in urban corridors from heterogeneous data. Transport. Res. Part C-Emerg. Technol. 66, 99–118 (2016)

    Article  Google Scholar 

  16. NGSIM: Next generation simulation. https://data.transportation.gov/Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-Trajector/8ect-6jqj

  17. Park, C., et al.: Stgrat: a spatio-temporal graph attention network for traffic forecasting. arXiv: Learning (2019)

  18. Quinonerocandela, J., Rasmussen, C.E.: A unifying view of sparse approximate gaussian process regression. J. Machine Learn. Res. 6, 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Rasmussen, C.E.: Gaussian processes in machine learning (2003)

    Google Scholar 

  20. Rodrigues, F., Pereira, F.C.: Heteroscedastic gaussian processes for uncertainty modeling in large-scale crowdsourced traffic data. Transport. Res. Part C-Emerging Technol. 95, 636–651 (2018)

    Article  Google Scholar 

  21. Seo, T., Bayen, A.M., Kusakabe, T., Asakura, Y.: Traffic state estimation on highway: a comprehensive survey. Ann. Rev. Control 43, 128–151 (2017)

    Article  Google Scholar 

  22. Singh, G., Yoon, J., Son, Y., Ahn, S.: Sequential neural processes. arXiv: Learning (2019)

    Google Scholar 

  23. Smaragdis, E., Papageorgiou, M., Kosmatopoulos, E.B.: A flow-maximizing adaptive local ramp metering strategy. Transport. Res. Part B-Methodol. 38(3), 251–270 (2004)

    Article  Google Scholar 

  24. Tagade, P., Hariharan, K.S., Ramachandran, S., Khandelwal, A., Naha, A., Kolake, S.M., Han, S.H.: Deep gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis. J. Power Sources 445, 227281 (2020)

    Article  Google Scholar 

  25. Tan, H., Feng, G., Feng, J., Wang, W., Zhang, Y., Li, F.: A tensor based method for missing traffic data completion. Transport. Res. Part C-Emerging Technol. 28, 15–27 (2013)

    Article  Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need, pp. 5998–6008 (2017)

    Google Scholar 

  27. Wu, Y., Tan, H., Qin, L., Ran, B., Jiang, Z.: A hybrid deep learning based traffic flow prediction method and its understanding. Transport. Res. Part C-Emerg. Technol. 90, 166–180 (2018)

    Article  Google Scholar 

  28. Xie, Y., Zhao, K., Sun, Y., Chen, D.: Gaussian processes for short-term traffic volume forecasting. Transport. Res. Record 2165(2165), 69–78 (2010)

    Article  Google Scholar 

  29. Xu, D.W., Dong, H.H., Li, H.J., Jia, L.M., Feng, Y.J.: The estimation of road traffic states based on compressive sensing. Transportmetrica B-Transport Dyn. 3(2), 131–152 (2015)

    Article  Google Scholar 

  30. Yang, F., Wang, S., Li, J., Liu, Z., Sun, Q.: An overview of internet of vehicles. China Commun. 11(10), 1–15 (2014)

    Article  Google Scholar 

  31. Yuan, Y., Van Lint, J.W.C., Wilson, R.E., Van Wageningenkessels, F.L.M., Hoogendoorn, S.P.: Real-time lagrangian traffic state estimator for freeways. IEEE Trans. Intell. Transport. Syst. 13(1), 59–70 (2012)

    Article  Google Scholar 

  32. Zhang, H., Goodfellow, I., Metaxas, D.N., Odena, A.: Self-attention generative adversarial networks. arXiv: Machine Learning (2018)

    Google Scholar 

  33. Zhang, J., Shi, X., Xie, J., Ma, H., King, I., Yeung, D.: Gaan: gated attention networks for learning on large and spatiotemporal graphs. arXiv: Learning (2018)

  34. Zhao, Z., Chen, W., Wu, X., Chen, P.C.Y., Liu, J.: LSTM network: a deep learning approach for short-term traffic forecast. IET Intell. Transport Syst. 11(2), 68–75 (2017)

    Article  Google Scholar 

  35. Zhong, M., Lingras, P., Sharma, S.: Estimation of missing traffic counts using factor, genetic, neural and regression techniques. Transport. Res. Part C-Emerg. Technol. 12(2), 139–166 (2004)

    Article  Google Scholar 

  36. Zhou, Y., Ahn, S., Chitturi, M., Noyce, D.A.: Rolling horizon stochastic optimal control strategy for ACC and CACC under uncertainty. Transport. Res. Part C-Emerg. Technol. 83, 61–76 (2017)

    Article  Google Scholar 

  37. Zhou, Y., Ahn, S., Wang, M., Hoogendoorn, S.P.: Stabilizing mixed vehicular platoons with connected automated vehicles: An h-infinity approach. Transport. Res. Procedia 38, 441–461 (2019)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by National Key R&D Program of China No. 2017YFB1200700. Authors thank FHWA for making the NGSIM trajectory data available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, Y., Zhou, Y., Yao, S., Ding, F., Wang, P. (2021). Real-Time Fine-Grained Freeway Traffic State Estimation Under Sparse Observation. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2020. Lecture Notes in Computer Science(), vol 12457. Springer, Cham. https://doi.org/10.1007/978-3-030-67658-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67658-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67657-5

  • Online ISBN: 978-3-030-67658-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics