Skip to main content

Molecular Taxonomy, Diversity, and Potential Applications of Genus Fusarium

  • Chapter
  • First Online:
Industrially Important Fungi for Sustainable Development

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The widely distributed and ubiquitous genus Fusarium, introduced first ever by Link in 1809, has been known for its devastating effects on plants, animals, and even human beings especially who are immunocompromised. The controversial taxonomy, diversity in species and ecological niches, infection in many important plant species, and production of mycotoxins make the fungus very important scientifically to researchers and scientists and economically to farmers and has been a center of discussion since many years. Although a stable taxonomy of the fungus is a requisite for the identification of fungi and diagnosis of the disease in the plant, sadly there has been a conflict in the viewpoints of different taxonomists and phytopathologists as well. But the recent advances in molecular sciences like RAPD and UT-PCR have made this taxonomy easier and helpful in studying the diversity of the genus. The genus consists of diverse species distributed in almost all parts of the world and causing disease in many plants and seedlings with varying severity. In spite of its fifth rank in top ten plant pathogenic fungi, the fungus is being used in many industries as it is considered as a good source of many enzymes like chitinase, protease, and lipase. This chapter focuses mainly on the current taxonomical status, the diversity, and the usefulness of the Fusarium genus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Azeem AM, Abdel-Azeem MA, Darwish AG, Nafady NA, Ibrahim NA (2019) Fusarium: biodiversity, ecological significances, and industrial applications, pp 201–261

    Google Scholar 

  • Afanaseva MM, Kadyrov RM (1981) Selecting cellulose decomposing and lignin-decomposing fungi for use in an artificial closed ecological cycle. Mikol Fitopatol 14:410–416

    Google Scholar 

  • Akbar A, Hussain S, Ullah K, Fahim M, Ali GS (2018) Detection, virulence and genetic diversity of Fusarium species infecting tomato in Northern Pakistan. PLoS One 13:e0203613. https://doi.org/10.1371/journal.pone.0203613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Hatmi AMS, Meis JF, de Hoog GS (2016) Fusarium: molecular diversity and intrinsic drug resistance. PLoS Pathog 12:e1005464

    Article  Google Scholar 

  • Ali SS, Vidhale NN (2013) Protease production by Fusarium oxysporum in solid-state fermentation using rice bran. Am J Microbiol Res 1:45–47

    Article  CAS  Google Scholar 

  • Almeida MN, Guimarães VM, Falkoski DL, Paes GBT, Ribeiro JI Jr, Visser EM, Alfenas RF, Pereira OL, Rezende ST (2014) Optimization of endoglucanase and xylanase activities from Fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse. Appl Biochem Biotechnol 172:1332–1346

    Article  Google Scholar 

  • Alves-Santos FM, Benito EP, Eslava AP, Díaz-Mínguez JM (1999) Genetic diversity of Fusarium oxysporum strains from common bean fields in Spain. Appl Environ Microbiol. https://doi.org/10.1128/aem.65.8.3335-3340.1999

  • Askun T (ed) (2018) Fusarium: plant diseases, pathogen diversity, genetic diversity, resistance and molecular markers. BoD–Books on Demand, London

    Google Scholar 

  • Balmas V, Scherm B, Marcello A, Beyer M, Hoffmann L, Migheli Q, Pasquali M (2015) Fusarium species and chemotypes associated with Fusarium head blight and Fusarium root rot on wheat in Sardinia. Plant Pathol. https://doi.org/10.1111/ppa.12337

  • Bitas V, McCartney N, Li N, Demers J, Kim JE, Kim HS, Brown KM, Kang S (2015) Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling. Front Microbiol. https://doi.org/10.3389/fmicb.2015.01248

  • Brückner B, Blechschmidt D, Schubert B (1989) Fusarium moniliforme Sheld A fungus producing a broad spectrum of bioactive metabolites. Zentralbl Mikrobiol. https://doi.org/10.1016/S0232-4393(89)80019-8

  • Cambaza E (2018) Comprehensive description of Fusarium graminearum pigments and related compounds. Foods 7:165

    Article  CAS  Google Scholar 

  • Carmona SL, Burbano-David D, Gómez MR, Lopez W, Ceballos N, Castaño-Zapata J, Simbaqueba J, Soto-Suárez M (2020) Characterization of pathogenic and nonpathogenic Fusarium oxysporum isolates associated with commercial tomato crops in the Andean Region of Colombia. Pathogens. https://doi.org/10.3390/pathogens9010070

  • Carter JP, Rezanoor HN, Holden D, Desjardins AE, Plattner RD, Nicholson P (2002) Variation in pathogenicity associated with the genetic diversity of Fusarium graminearum. Eur J Plant Pathol. https://doi.org/10.1023/A:1019921203161

  • Chala A, Taye W, Ayalew A et al (2014) Multimycotoxin analysis of sorghum (Sorghum bicolor L. Moench) and finger millet (Eleusine coracana L. Garten) from Ethiopia. Food Control. https://doi.org/10.1016/j.foodcont.2014.04.018

  • Chandra S (2012) Endophytic fungi: novel sources of anticancer lead molecules. Appl Microbiol Biotechnol 95:47–59

    Article  CAS  Google Scholar 

  • Chandra NS, Wulff EG, Udayashankar AC, Nandini BP, Niranjana SR, Mortensen CN, Prakash HS (2011) Prospects of molecular markers in Fusarium species diversity. Appl Microbiol Biotechnol 90:1625–1639

    Article  Google Scholar 

  • de Lamo FJ, Takken FLW (2020) Biocontrol by Fusarium oxysporum using endophyte-mediated resistance. Front Plant Sci 11. https://doi.org/10.3389/fpls.2020.00037

  • Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7

    Chapter  Google Scholar 

  • Dhoro M (2010) Identification and differentiation of Fusarium species using selected molecular methods. Appl Environ Microbiol 12–20

    Google Scholar 

  • Dita M, Barquero M, Heck D, Mizubuti ESG, Staver CP (2018) Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01468

  • Hamilton MA, Knorr MS, Cajori FA (1953) Experimental studies of an antibiotic derived from Fusarium bostrycoides. Antibiot Chemother 3:853–860

    CAS  Google Scholar 

  • Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22

    Chapter  Google Scholar 

  • Ingle AP (2017) Diversity and identity of Fusarium species occurring on fruits, vegetables and food grains. Nusant Biosci 9:44–51. https://doi.org/10.13057/nusbiosci/n090108

    Article  Google Scholar 

  • Kharwar RN, Verma VC, Kumar A, Gond SK, Harper JK, Hess WM, Lobkovosky E, Ma C, Ren Y, Strobel GA (2009) Javanicin, an antibacterial naphthaquinone from an endophytic fungus of neem, chloridium sp. Curr Microbiol. https://doi.org/10.1007/s00284-008-9313-7

  • Kour D, Rana KL, Kaur T, Singh B, Chauhan VS, Kumar A et al (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh B, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, Hoboken, NJ, pp 321–372. https://doi.org/10.1002/9781119434436.ch16

    Chapter  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1

    Chapter  Google Scholar 

  • Kristensen R, Gauthier G, Berdal KG, Hamels S, Remacle J, Holst-Jensen A (2007) DNA microarray to detect and identify trichothecene- and moniliformin-producing Fusarium species. J Appl Microbiol. https://doi.org/10.1111/j.1365-2672.2006.03165.x

  • Lebeau J, Petit T, Dufossé L, Caro Y (2019) Putative metabolic pathway for the bioproduction of bikaverin and intermediates thereof in the wild Fusarium oxysporum LCP531 strain. AMB Express. https://doi.org/10.1186/s13568-019-0912-4

  • Leslie JF, Summerell BA (2007) The Fusarium laboratory manual. Blackwell, Ames, IA

    Google Scholar 

  • Mandeel Q (1991) Mechanisms involved in biological control of Fusarium wilt of cucumber with strains of nonpathogenic Fusarium oxysporum. Phytopathology. https://doi.org/10.1094/phyto-81-462

  • Manshor N, Rosli H, Ismail NA, Salleh B, Zakaria L (2012) Diversity of Fusarium species from highland areas in Malaysia. Trop Life Sci Res 23:1–15

    PubMed  PubMed Central  Google Scholar 

  • Moradi M (2017) Improved procedure for mass inoculum production of Fusarium species in a short period of time. Appl Entomol Phytopathol 84:21–31

    Google Scholar 

  • Nelson SC (1991) Infection by clover yellow vein virus alters epidemic components of cercospora leaf spot on white clover. Phytopathology 81:989. https://doi.org/10.1094/phyto-81-989

    Article  Google Scholar 

  • Nelson PE, Dignani MC, Anaissie EJ (1994) Taxonomy, biology, and clinical aspects of Fusarium species. Clin Microbiol Rev 7:479–504

    Article  CAS  Google Scholar 

  • O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol. https://doi.org/10.1016/j.fgb.2004.03.003

  • Phongpaichit S, Rungjindamai N, Rukachaisirikul V, Sakayaroj J (2006) Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunol Med Microbiol. https://doi.org/10.1111/j.1574-695X.2006.00155.x

  • Prasad S, Malav LC, Choudhary J, Kannojiya S, Kundu M, Kumar S et al (2021) Soil microbiomes for healthy nutrient recycling. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 1–21. https://doi.org/10.1007/978-981-15-6949-4_1

    Chapter  Google Scholar 

  • Rana A, Sahgal M, Johri BN (2017) Fusarium oxysporum: genomics, diversity and plant-host interaction. In: Developments in fungal biology and applied mycology. Springer, Singapore

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam

    Google Scholar 

  • Rombouts, FM, Pilnik, W, 1980. Pectic enzymes. In: Rose, A.H. (Ed.), Economic Microbiology. 5. Academic Press, London, 227–282

    Google Scholar 

  • Saldajeno MGB, Hyakumachi M (2011) The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. Ann Appl Biol. https://doi.org/10.1111/j.1744-7348.2011.00471.x

  • Snyder WC, Hansen HN (1940) The species concept in Fusarium. Am J Bot 27:64. https://doi.org/10.2307/2436688

    Article  Google Scholar 

  • Studt L, Wiemann P, Kleigrewe K, Humpf HU, Tudzynski B (2012) Biosynthesis of fusarubins accounts for pigmentation of Fusarium Fujikuroi perithecia. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00823-12

  • Summerell BA (2019) Resolving Fusarium: current status of the genus. Annu Rev Phytopathol 57:323–339. https://doi.org/10.1146/annurev-phyto-082718-100204

    Article  CAS  PubMed  Google Scholar 

  • Summerell BA, Laurence MH, Liew ECY, Leslie JF (2010) Biogeography and phylogeography of Fusarium: a review. Fungal Divers 44:3–13

    Article  Google Scholar 

  • Thomas B, ContetAudonneau N, Machouart M, Debourgogne A (2019) Molecular identification of Fusarium species complexes: which gene and which database to choose in clinical practice? J Mycol Med 29:56–58. https://doi.org/10.1016/j.mycmed.2019.01.003

    Article  PubMed  Google Scholar 

  • Vujanovic V, Hamel C, Yergeau E, St-Arnaud M (2006) Biodiversity and biogeography of Fusarium species from northeastern North American asparagus fields based on microbiological and molecular approaches. Microb Ecol 51:242–255. https://doi.org/10.1007/s00248-005-0046-x

    Article  PubMed  Google Scholar 

  • Wang J, Zhao Z, Yang X, Yang J, Gong A, Zhang J et al (2019) Fusarium graminearum species complex and trichothecene genotype. In: Mycotoxins and food safety. IntechOpen, London

    Google Scholar 

  • Windels CE (1991) Current status of Fusarium taxonomy. Phytopathology 81(9):1048–1051

    Google Scholar 

  • Wollenweber HW, Reinking OA (1935). Die Fusarien, ihre beschreibung: schadwirkung und bekämpfung, p 355

    Google Scholar 

  • Yadav AN (2020) Recent trends in mycological research, Agricultural and medical perspective, vol 1. Springer, Cham

    Google Scholar 

  • Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020a) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton

    Google Scholar 

  • Yadav AN, Singh J, Singh C, Yadav N (2020b) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samiksha, Kumar, S. (2021). Molecular Taxonomy, Diversity, and Potential Applications of Genus Fusarium. In: Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Usmani, Z. (eds) Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-67561-5_8

Download citation

Publish with us

Policies and ethics