Abstract
Epicoccum is a genus of ubiquitous fungi typically found in air, soil, water, stone, decaying vegetation, and plant tissues. Epicoccum spp. are known as biocontrol agents against phytopathogens; also the ability of this fungus to produce many secondary metabolites makes it important in biotechnological applications, including biotransformation of compounds such as the drug diclofenac, ketones, and ionones and biosynthesis of silver and gold nanoparticles. Among the bioactive compounds produced by Epicoccum spp., epicocconone is a commercially available fluorophore, D8646-2-6 is a patented telomerase inhibitor, and taxol is an anticancer drug originally isolated from Taxus brevifolia. Epicoccum spp. also produces epicolactone, an antimicrobial compound, and other bioactive chemical compounds including siderophores, antioxidants, inhibitors of HIV-1 replication, inhibitors of leukemic cells, inhibitors of protease, and inhibitors of telomerase and fluorescence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abass MH (2016) Identification of different fungal fruit rot pathogens of date palm (Phoenix dactylifera L.) using ITS and RAPD markers. Basrah J Date Palm Res 15(1–2):1–19
Abass MH, Hameed MA, Alsadoon AH (2007) Survey of fungal leaf spot diseases of date palm in Shaat-Alarab orchards and evaluation of some fungicides. Basrah J Date Palm Res 6(1):1–21
Abbas AKH, Al-Snafi AE, Bander KI (2009) Isolation and identification of antibiotics produced by Penicillium brasilianum Batista isolated from Salahaddin Province soils. Thi-Qar Med J 3(1):71–87
Abdel Hameed AA, Khoder MI, Yuosra S, Osman AM, Ghanem S (2009) Diurnal distribution of airborne bacteria and fungi in the atmosphere of Helwan area, Egypt. Sci Total Environ 407(24):6217–6222. https://doi.org/10.1016/j.scitotenv.2009.08.028
Abdel-Hafez SI (1981) Halophilic fungi of desert soils in Saudi Arabia. Mycopathologia 75(2):75–80. https://doi.org/10.1007/BF00505781
Abdel-Hafez SI, Nafady NA, Abdel-Rahim IR, Shaltout AM, Daròs JA, Mohamed MA (2017) Biosynthesis of silver nanoparticles using the compound curvularin isolated from the endophytic fungus Epicoccum nigrum: characterization and antifungal activity. J Pharm Appl Chem 3(2):135–146. https://doi.org/10.18576/jpac/030207
Abdel-Lateff A, Fisch KM, Wright AD, König GM (2003) A new antioxidant isobenzofuranone derivative from the algicolous marine fungus Epicoccum sp. Planta Med 69(9):831–834. https://doi.org/10.1055/s-2003-43209
Abdullah SK, Al-Khesraji TO, Al-Edany TY (1986) Soil mycoflora of the southern desert of Iraq, Sydowia. Annal Mycol 39:8–16
Abe CA, Faria CB, De Castro FF, De Souza SR, Santos FC, Da Silva CN et al (2015) Fungi isolated from maize (Zea mays L.) grains and production of associated enzyme activities. Int J Mol Sci 16(7):15328–15346. https://doi.org/10.3390/ijms160715328
Abrusci C, Martin-Gonzalez A, Del Amo A, Catalina F, Collado J, Platas G (2005) Isolation and identification of bacteria and fungi from cinematographic films. Int Biodeterior Biodegrad 56:58–68. https://doi.org/10.1016/j.ibiod.2005.05.004
Abu-Dieyeh MH, Barham R, Abu-Elteen K, Al-Rashidi R, Shaheen I (2010) Seasonal variation of fungal spore populations in the atmosphere of Zarqa area, Jordan. Aerobiologia 26(4):263–276. https://doi.org/10.1007/s10453-010-9162-2
Afzal M, Mehdi FS (2002) Atmospheric fungi of Karachi city. Pak J Biol Sci 5(6):707–709. https://doi.org/10.3923/pjbs.2002.707.709
Ahumada-Rudolph R, Novoa V, Becerra J (2019) Morphological response to salinity, temperature, and pH changes by marine fungus Epicoccum nigrum. Environ Monit Assess 191(1):35. https://doi.org/10.1007/s10661-018-7166-5
Akkermans AD, Mirza MS, Harmsen HJ, Blok HJ, Herron PR, Sessitsch A et al (1994) Molecular ecology of microbes: a review of promises, pitfalls and true progress. FEMS Microbiol Rev 15:185–194. https://doi.org/10.1111/j.1574-6976.1994.tb00134.x
Alcock A, Elmer P, Marsden R, Parry F (2015) Inhibition of Botrytis cinerea by epirodin: a secondary metabolite from New Zealand isolates of Epicoccum nigrum. J Phytopathol 163(10):841–852. https://doi.org/10.1111/jph.12383
Alkhakany AY, Khalaf JM, Karim AJ (2017) Occurrence of filamentous fungi from tap and river water in Baghdad-Iraq. Int J Sci Nat 8(4):830–841
Al-Musallam AA, Al-Sammar HF, Al-Sané NA (2011) Diversity and dominance of fungi inhabiting the sabkha area in Kuwait. Bot Mar 54(1):83–94. https://doi.org/10.1515/bot.2010.069
Al-Subai AA (2002) Air-borne fungi at Doha, Qatar. Aerobiologia 18:175–183. https://doi.org/10.1023/A:1021344307205
Al-Suwaine AS, Hasnain SM, Bahkali AH (1999) Viable airborne fungi in Riyadh, Saudi Arabia. Aerobiologia 15:121–130. https://doi.org/10.1023/A:1007595400116
Amma S, Toju H, Wachrinrat C, Sato H, Tanabe AS, Artchawakom T et al (2018) Composition and diversity of soil fungi in dipterocarpaceae-dominated seasonal tropical forests in Thailand. Microbes Environ 33(2):135–143. https://doi.org/10.1264/jsme2.ME17168
Andersen GL, Frisch AS, Kellogg CA, Levetin E, Lighthart B, Paterno D (2009) Aeromicrobiology/air quality. In: Encyclopedia of microbiology. Academic Press, Oxford, pp 11–26. https://doi.org/10.1016/B978-012373944-5.00166-8
Andrade LH, Keppler AF, Schoenlein-Crusius IH, Porto AL, Comasseto JV (2004) Evaluation of acetophenone monooxygenase and alcohol dehydrogenase activities in different fungal strains by biotransformation of acetophenone derivatives. J Mol Catal B Enzym 31(4–6):129–135. https://doi.org/10.1016/j.molcatb.2004.08.006
Antón SF, de la Cruz DR, Sánchez JS, Sánchez Reyes E (2019) Analysis of the airborne fungal spores present in the atmosphere of Salamanca (MW Spain): a preliminary survey. Aerobiologia 35:447–462. https://doi.org/10.1007/s10453-019-09569-z
Arenal F, Platas G, Martin J, Asensio FJ, Salazar O, Collado J et al (2002) Comparison of genotypic and phenotypic techniques for assessing the variability of the fungus Epicoccum nigrum. J Appl Microbiol 93(1):36–45. https://doi.org/10.1046/j.1365-2672.2002.01654.x
Arnold AE (2007) Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev 21(2–3):51–66. https://doi.org/10.1016/j.fbr.2007.05.003
Arvanitidou M, Kanellou K, Constantinidis T, Katsouyannopoulos V (2000) Higher prevalence of Alternaria spp. in marine and river waters than in potable samples. Microbiol Res 155:49–51. https://doi.org/10.1016/s0944-5013(00)80022-1
Ataygul E, Celenk S, Canitez Y, Bicakci A, Malyer H, Sapan N (2007) Allergenic fungal spore concentrations in the atmosphere of Bursa, Turkey. J Biol Environ Sci 1(2):73–79
Aveskamp MM, De Gruyter J, Woudenberg JH, Verkley GJ, Crous PW (2010) Highlights of the Didymellaceae: a polyphasic approach to characterise Phoma and related pleosporalean genera. Stud Mycol 65:1–60. https://doi.org/10.3114/sim.2010.65.01
Babič MN, Gunde-Cimerman N, Vargha M, Tischner Z, Magyar D, Veríssimo C et al (2017) Fungal contaminants in drinking water regulation? A tale of ecology, exposure, purification and clinical relevance. Int J Environ Res Public Health 14(6):636. https://doi.org/10.3390/ijerph14060636
Bagy MM, Abd-Alla MH, Morsy FM, Hassan EA (2014) Two stage biodiesel and hydrogen production from molasses by oleaginous fungi and Clostridium acetobutylicum ATCC 824. Int J Hydrog Energy 39(7):3185–3197. https://doi.org/10.1016/j.ijhydene.2013.12.106
Bamford PC, Norris GLF, Ward G (1961) Flavipin production by Epicoccum spp. Trans Br Mycol Soc 44(3):354–356. https://doi.org/10.1016/s0007-1536(61)80028-4
Bao XT, Dharmasena DS, Li DX, Wang X, Jiang SL, Ren YF et al (2019) First report of Epicoccum sorghinum causing leaf spot on tea in China. Plant Dis 103(12):3282–3282. https://doi.org/10.1094/PDIS-06-18-1032-PDN
Bahrim GA, Şopticã F (2004) Correlative effect of solid media on yellow pigmentogenesis at an Epicoccum sp. strain. Roum Biotechnol Lett 9(4):1757–1763
Barbu V, Bahrim G, Şoptică F, Socaciu C (2006) Modification of pigment composition in Epicoccum nigrum by chemical mutagenesis. Sci Study Res 7:589–596
Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64(2):269–285. https://doi.org/10.1016/j.ecolecon.2007.03.004
Basilico M, de la Luz Z, Chiericatti C, Aringoli EE, Althaus RL, Basilico JC (2007) Influence of environmental factors on airborne fungi in houses of Santa Fe City, Argentina. Sci Total Environ 376(1–3):143–150. https://doi.org/10.1016/j.scitotenv.2007.01.001
Baute MA, Deffieux G, Baute R, Neveu A (1978) New antibiotics from the fungus Epicoccum nigrum I. Fermentation, isolation and antibacterial properties. The journal of Antibiotics 31(11):1099–1101. https://doi.org/10.7164/antibiotics.31.1099
Bell PJL, Karuso P (2003) Epicocconone, a novel fluorescent compound from the fungus Epicoccum nigrum. J Am Chem Soc 125(31):9304–9305. https://doi.org/10.1021/ja035496+
Bhati H, Gaur RD (1979) Studies on aerobiology-atmospheric fungal spores. New Phytol 82(2):519–527. https://doi.org/10.1111/j.1469-8137.1979.tb02678.x
Birch AJ, Musgrave OC, Rickards RW, Smith HJ (1959) Studies in relation to biosynthesis. Part XX. The structure and biosynthesis of curvularin. J Chem Soc (Resumed) 0:3146–3152. https://doi.org/10.1039/JR9590003146
Bisht V, Singh BP, Arora N, Gaur SN, Sridhara S (2002) Antigenic and allergenic cross-reactivity of Epicoccum nigrum with other fungi. Ann Allergy Asthma Immunol 89(3):285–291. https://doi.org/10.1016/S1081-1206(10)61956-4
Bleoju MM, Sanjosé MG (2007) Study about the stability and some technological properties of the pigments synthesized by Epicoccum nigrum. Innov Rom Food Biotechnol 1:37–44
Bockus WW, Bowden RL, Hunger RM, Murray TD, Smiley RW (2010) Compendium of wheat diseases and pests, 3rd edn. American Phytopathological Society Press, St. Paul, MN, p 171
Boettger D, Hertweck C (2013) Molecular diversity sculpted by fungal PKS-NRPS hybrids. Chembiochem 14(1):28–42. https://doi.org/10.1002/cbic.201200624
Boniek D, Mendes IC, dos Santos AF, Resende-Stoianoff MA (2017) Biocidal effect of gamma radiation on the ecology of filamentous fungal populations associated with stone deterioration. J Environ Sci Eng 6:252–259. https://doi.org/10.17265/2162-5298/2017.05.005
Braams J (1992) Ecological studies of the fungal microflora inhabiting historical sandstone monuments. PhD thesis, Oldenburg, p 104
Braga RM, Padilla G, Araújo WL (2018) The biotechnological potential of Epicoccum spp.: diversity of secondary metabolites. Crit Rev Microbiol 44(6):759–778. https://doi.org/10.1080/1040841X.2018.1514364
Brown AE (1984) Epicoccum nigrum, a primary saprophyte involved in the retting of flax. Trans Br Mycol Soc 83(1):29–35. https://doi.org/10.1016/s0007-1536(84)80242-9
Brown AE, Finlay R, Ward JS (1987) Antifungal compounds produced by Epicoccum purpurascens against soil-borne plant pathogenic fungi. Soil Biol Biochem 19(6):657–664. https://doi.org/10.1016/0038-0717(87)90044-7
Bruton BD, Redlin SC, Collins JK, Sams CE (1993) Postharvest decay of cantaloupe caused by Epicoccum nigrum. Plant Dis 77:1060–1062. https://doi.org/10.1094/PD-77-1060
Burge WR, Buckley LJ, Sullivan JDJR, McGrattan CJ, Ikawa M (1976) Isolation and biological activity of the pigments of the mold Epicoccum nigrum. J Agric Food Chem 24(3):555–559. https://doi.org/10.1021/jf60205a005
Calvo MA, Guarro J, Suarez G, Ramírez C (1980) Air-borne fungi in the air of Barcelona (Spain). IV. Various isolated genera. Mycopathologia 71(2):119–123. https://doi.org/10.1007/bf00440618
Cappitelli F, Nosanchuk JD, Casadevall A, Toniolo L, Brusetti L, Florio S et al (2007) Synthetic consolidants attacked by melanin-producing fungi: case study of the biodeterioration of Milan (Italy) cathedral marble treated with acrylics. Appl Environ Microbiol 73(1):271–277. https://doi.org/10.1128/AEM.02220-06.
Chen Q, Jiang GR, Zhang GZ, Cai L, Crous PW (2015) Resolving the Phoma enigma. Stud Mycol 82:137–217. https://doi.org/10.1016/j.simyco.2015.10.003
Chen Q, Hou LW, Duan WJ, Crous PW, Cai L (2017a) Didymellaceae revisited. Stud Mycol 87:105–159. https://doi.org/10.1016/j.simyco.2017.06.002
Chen XL, Wang YH, Luo T (2017b) First report of leaf spot caused by Phoma sorghina on Oxalis debilis in China. Plant Dis 101(6):1047–1047. https://doi.org/10.1094/PDIS-11-16-1614-PDN
Chi LP, Li XM, Li L, Li X, Wang BG (2020) Cytotoxic thiodiketopiperazine derivatives from the deep sea-derived fungus Epicoccum nigrum SD-388. Mar Drugs 18(3):160. https://doi.org/10.3390/md18030160
Colavolpe B, Ezquiaga J, Maiale S, Ruiz O (2018) First report of Epicoccum nigrum causing disease in Lotus corniculatus in Argentina. New Dis Rep 38:6. https://doi.org/10.5197/j.2044-0588.2018.038.006
Comeau AM, Vincent WF, Bernier L, Lovejoy C (2016) Novel chytrid lineages dominate fungal sequences in diverse marine and freshwater habitats. Sci Rep 6(1):1–6. https://doi.org/10.1038/srep30120
Corey JP, Kaiseruddin S, Gungor A (1997) Prevalence of mold-specific immunoglobulins in a midwestern allergy practice. Otolaryngol Head Neck Surg 117(5):516–520. https://doi.org/10.1016/s0194-5998(97)70024-x
Cretu R, Bahrim G, Stefan D, Olteanu M (2008) Evaluation of physical and chemical characteristics of yellow colorant produced by Epicoccum nigrum MIUG 2.15 in crude extracts and emulsions. Rom Biotechnol Lett 13(5):59–68
Cueva C, García-Ruiz A, González-Rompinelli E, Bartolome B, Martín-Álvarez PJ, Salazar O, Vicente MF, Bills GF, Moreno-Arribas MV (2012) Degradation of biogenic amines by vineyard ecosystem fungi. Potential use in winemaking. J Appl Microbiol 112(4):672–682. https://doi.org/10.1111/j.1365-2672.2012.05243.x
da Silva Araújo FD, de Lima Fávaro LC, Araújo WL, De Oliveira FL, Aparicio R, Marsaioli AJ (2012) Epicolactone-natural product isolated from the sugarcane Endophytic fungus Epicoccum nigrum. Eur J Org Chem 12(27):5225–5230. https://doi.org/10.1002/ejoc.201200757
da Silva JB, Pozzi CR, Mallozzi MA, Ortega EM, Corrêa B (2000) Mycoflora and occurrence of aflatoxin B1 and fumonisin B1 during storage of Brazilian Sorghum. J Agric Food Chem 48(9):4352–4356. https://doi.org/10.1021/jf990054w
Dawoodi V, Madani M, Tahmourespour A, Golshani Z (2015) The study of heterotrophic and crude oil-utilizing soil fungi in crude oil contaminated regions. J Bioremed Biodegr 6(2):12–26. https://doi.org/10.4172/2155-6199.1000270
De Toni PS, Reilly K (2011) A review of fungi in drinking water and the implications for human health, 1st edn. DEFRA (Department for Environment, Food and Rural Affairs); BIO Intelligence Service, Paris, p 107
Denning DW, O’Driscoll BR, Hogaboam CM, Bowyer P, Niven RM (2006) The link between fungi and severe asthma: a summary of the evidence. Eur Respir J 27(3):615–626. https://doi.org/10.1183/09031936.06.00074705
Devi R, Kaur T, Guleria G, Rana K, Kour D, Yadav N et al (2020a) Fungal secondary metabolites and their biotechnological application for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7
Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020b) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosyst 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016
Diakumaku E, Gorbushina AA, Krumbein WE, Panina L, Soukharjevski S (1995) Black fungi in marble and limestones - an aesthetical, chemical and physical problem for the conservation of monuments. Sci Total Environ 167(1–3):295–304. https://doi.org/10.1016/0048-9697(95)04590-w
Dix NJ, Webster J (1995) Fungal ecology, Chapman and Hall, London. J Fung Ecol 45(3):332–333. https://doi.org/10.18960/seitai.45.3_332_2
Domsch KH, Gams W (1993) Compendium of soil fungi, vol 1. IHW-Verlag, Eching, pp 630–643
Du P, Du R, Ren W, Lu Z, Zhang Y, Fu P (2018) Variations of bacteria and fungi in PM 2.5 in Beijing, China. Atmos Environ 172:55–64. https://doi.org/10.1016/j.atmosenv.2017.10.04
Dufossé L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol 26:56–61. https://doi.org/10.1016/j.copbio.2013.09.007
Dzoyem JP, Melong R, Tsamo AT, Maffo T, Kapche DGWF et al (2017) Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endophytic fungus Epicoccum nigrum associated with Entada abyssinica. Rev Bras Farmacogn 27(2):251–253. https://doi.org/10.1016/j.bjp.2016.08.011
El Amrani M, Lai D, Debbab A, Aly AH, Siems K, Seidel C et al (2014) Protein kinase and HDAC inhibitors from the endophytic fungus Epicoccum nigrum. J Nat Prod 77(1):49–56. https://doi.org/10.1021/np4005745
Ellerbrock P, Armanino N, Trauner D (2014) Biomimetic synthesis of the calcineurin phosphatase inhibitor dibefurin. Angew Chem 126(49):13632–13636. https://doi.org/10.1002/anie.201407088
Ellerbrock P, Armanino N, Ilg MK, Webster R, Trauner D (2015) An eight-step synthesis of epicolactone reveals its biosynthetic origin. Nat Chem 7(11):879–882. https://doi.org/10.1038/nchem.2336
El-Samawaty AE, Yassin MA, Abdel-Wahab MA (2018) Airborne fungi in outdoor air of Riyadh city, kingdom of Saudi Arabia. Fresen Environ Bull 27(5):2943–2950
Esch RE, Codina R (2017) Fungal raw materials used to produce allergen extracts. Ann Allergy Asthma Immunol 118(4):399–405. https://doi.org/10.1016/j.anai.2016.05.012
Fang Z, Ouyang Z, Zheng H, Wang X, Hu L (2007) Culturable airborne bacteria in outdoor environments in Beijing, China. Microb Ecol 54(3):487–496. https://doi.org/10.1007/s00248-007-9216-3
Fassatiová O (1986) Moulds and filamentous fungi in technical microbiology. Elsevier, Amsterdam, pp 189–190
Fatima N, Ismail T, Muhammad SA, Jadoon M, Ahmed S, Azhar S et al (2016) Epicoccum sp. an emerging source of unique bioactive metabolites. Acta Pol Pharm 73(1):13–21
Fávaro LC, de Melo FL, Aguilar-Vildoso CI, Araújo WL (2011) Polyphasic analysis of intraspecific diversity in Epicoccum nigrum warrants reclassification into separate species. PLoS One 6(8):e14828. https://doi.org/10.1371/journal.pone.0014828
Fávaro LC, Sebastianes FL, Araújo WL (2012) Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth. PLoS One 7(6):e36826. https://doi.org/10.1371/journal.pone.0036826
Fazio AT, Cavicchioli A, Penna DS, Chambergo FS, de Faria DL (2015) Towards a better comprehension of biodeterioration in earthen architecture: study of fungi colonisation on historic wall surfaces in Brazil. J Cult Herit 16(6):934–938. https://doi.org/10.1016/j.culher.2015.04.001
Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL et al (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci 109(52):21390–21395. https://doi.org/10.1073/pnas.1215210110
Finlay RD (2007) The fungi in soil. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology. CRC Press, New York, pp 107–146
Fisch KM (2013) Biosynthesis of natural products by microbial iterative hybrid PKS-NRPS. RSC Adv 3(40):18228–18247. https://doi.org/10.1039/c3ra42661k
Flannigan B, Samson RA, Miller JD (2011) Microorganisms in home and indoor work environments. CRC Press, Boca Raton, p 539. https://doi.org/10.1201/b10838
Foppen FH, Gribanovski-Sassu O (1968) Lipids produced by Epicoccum nigrum in submerged culture. Biochem J 106(1):97–100. https://doi.org/10.1042/bj1060097
Forbes G, Bandyopadhyay R, Garcia G (1992) A review of sorghum grain mold. In: Sorghum and millets diseases: a second world review, 1st edn. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, pp 265–272
Frederick CB, Bentley MD, Shive W (1981a) Structure of triornicin, a new siderophore. Biochemistry 20(9):2436–2438. https://doi.org/10.1021/bi00512a011
Frederick CB, Szaniszlo PJ, Vickrey PE, Bentley MD, Shive W (1981b) Production and isolation of siderophores from the soil fungus Epicoccum purpurascens. Biochemistry 20(9):2432–2436. https://doi.org/10.1021/bi00512a010
Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U (2009) High diversity of fungi in air particulate matter. Proc Natl Acad Sci U S A 106(31):12814–12819. https://doi.org/10.1073/pnas.0811003106
Fuentes A, Herrera H, Charles TC, Arriagada C (2020) Fungal and bacterial microbiome associated with the rhizosphere of native plants from the Atacama Desert. Microorganisms 8(2):209. https://doi.org/10.3390/microorganisms8020209
Gardi C, Montanarella L, Arrouays D, Bispo A, Lemanceau P, Jolivet C et al (2009) Soil biodiversity monitoring in Europe: ongoing activities and challenges. Eur J Soil Sci 60(5):807–819. https://doi.org/10.1111/j.1365-2389.2009.01177.x
Gaucher GM, Shepherd MG (1968) Isolation of orsellinic acid synthase. Biochem Biophys Res Commun 32(4):664–671. https://doi.org/10.1016/0006-291x(68)90290-8
Geris R, Simpson TJ (2009) Meroterpenoids produced by fungi. Nat Prod Rep 26(8):1063–1094. https://doi.org/10.1039/b820413f
Giambrone JJ, Davis ND, Diener UL (1978) Effect of tenuazonic acid on young chickens. Poultry Sci 57(6):1554–1558. https://doi.org/10.3382/ps.0571554
Giraud F, Guiraud P, Kadri M, Blake G, Steiman R (2001) Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Water Res 35(17):4126–4136. https://doi.org/10.1016/s0043-1354(01)00137-3
Gómez-Alarcón G, Cilleros B, Flores M, Lorenzo J (1995) Microbial communities and alteration processes in monuments at Alcala-De-Henares, Spain. Sci Total Environ 167:231–239. https://doi.org/10.1016/0048-9697(95)04584-N
González-Martínez S, Soria I, Ayala N, Portillo-López A (2017) Culturable halotolerant fungal isolates from Southern California Gulf sediments. Open Agric 2(1):292–299. https://doi.org/10.1515/opag-2017-0033
Gravesen S, Nielsen PA, Iversen R, Nielsen KF (1999) Microfungal contamination of damp buildings—examples of risk constructions and risk materials. Environ Health Perspect 107:505–508. https://doi.org/10.1289/ehp.99107s3505
Grbić ML, Simić GS, Stupar M, Jelikić A, Sabovljević M, Đorđević M et al (2017) Biodiversity’s hidden treasure: biodeteriorated archaeological tombstones of Serbia. Curr Sci 112(2):304–310
Gribanovski-Sassu O, Foppen FH (1967) The carotenoids of the fungus Epicoccum nigrum link. Phytochemistry 6(6):907–909. https://doi.org/10.1016/s0031-9422(00)86041-0
Griffin GF, Chu FS (1983) Toxicity of the Alternaria metabolites alternariol, alternariol methyl ether, altenuene, and tenuazonic acid in the chicken embryo assay. Appl Environ Microbiol 46(6):1420–1422. https://doi.org/10.1128/AEM.46.6.1420-1422.1983
Gu B, He S, Yan X, Zhang L (2013) Tentative biosynthetic pathways of some microbial diketopiperazines. Appl Microbiol Biotechnol 97(19):8439–8453. https://doi.org/10.1007/s00253-013-5175-4
Guiraud P, Steiman R, Seigle-Murandi F, Sage L (1995) Mycoflora of soil around the dead sea II—deuteromycetes (except Aspergillus and Penicillium). Syst Appl Microbiol 18(2):318–322. https://doi.org/10.1016/s0723-2020(11)80403-0
Guo H, Sun B, Gao H, Chen X, Liu S, Yao X et al (2009) Diketopiperazines from the Cordyceps-colonizing fungus Epicoccum nigrum. J Nat Prod 72(12):2115–2119. https://doi.org/10.1021/np900654a
Hansson D (2013) Structure and biosynthesis of fungal secondary metabolites: studies of the root Rot Pathogen Heterobasidion annosum s.l. and the biocontrol fungus Phlebiopsis gigantea. Thesis
Harvey R (1993) Preservation in libraries: principles, strategies and practices for librarians. Bowker-Saur, London
Harwoko H, Daletos G, Stuhldreier F, Lee J, Wesselborg S, Feldbrügge M et al (2019) Dithiodiketopiperazine derivatives from endophytic fungi Trichoderma harzianum and Epicoccum nigrum. Nat Prod Res 1–9. https://doi.org/10.1080/14786419.2019.1627348
Hasan S, Ansari MI, Ahmad A, Mishra M (2015) Major bioactive metabolites from marine fungi: a review. Bioinformation 11(4):176–181. https://doi.org/10.6026/97320630011176
Hatami Rad S, Ebrahimi L, Shahbazi H (2019) First record of Epicoccum andropogonis growing on Paspalum dilatatum ergot in Iran. Mycol Iran 6(1):49–54. https://doi.org/10.22043/mi.2020.121093
Henríquez VI, Villegas GR, Nolla JMR (2001) Airborne fungi monitoring in Santiago, Chile. Aerobiologia 17:137–142. https://doi.org/10.1023/A:1010833101583
Henríquez M, Vergara K, Norambuena J, Beiza A, Maza F, Ubilla P et al (2014) Diversity of cultivable fungi associated with Antarctic marine sponges and screening for their antimicrobial, antitumoral and antioxidant potential. World J Microbiol Biotechnol 30(1):65–76. https://doi.org/10.1007/s11274-013-1418-x
Hesham AE-L, Kaur T, Devi R, Kour D, Prasad S, Yadav N et al (2021) Current trends in microbial biotechnology for agricultural sustainability: conclusion and future challenges. In: Yadav AN, Singh J, Singh C, Yadav N (eds) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore, pp 555–572. https://doi.org/10.1007/978-981-15-6949-4_22
Hetrick KJ, van der Donk WA (2017) Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era. Curr Opin Chem Biol 38:36–44. https://doi.org/10.1016/j.cbpa.2017.02.005
Hogan MB, Patterson R, Pore RS, Corder WT, Wilson NW (1996) Basement shower hypersensitivity pneumonitis secondary to Epicoccum nigrum. Chest 110(3):854–856. https://doi.org/10.1378/chest.110.3.854
Huang N, Wu MY, Zheng CB, Zhu L, Zhao JH, Zheng YT (2013) The depolymerized fucosylated chondroitin sulfate from sea cucumber potently inhibits HIV replication via interfering with virus entry. Carbohydrate research 18(380):64–69. https://doi.org/10.1016/j.carres.2013.07.010
Hu DX, Withall DM, Challis GL, Thomson RJ (2016) Structure, chemical synthesis, and biosynthesis of prodiginine natural products. Chem Rev 116(14):7818–7853. https://doi.org/10.1021/acs.chemrev.6b00024
Hussaini AM, Timothy AG, Olufunmilayo HA, Ezekiel AS, Godwin HO (2009) Fungi and some mycotoxins found in mouldy Sorghum in Niger State, Nigeria. World J Agric Sci 5(1):5–17
Hutchens E, Clipson N, McDermott FP (2006) Microbial colonization of rock surfaces: random or mineral specific selection? Geochim Cosmochim Acta 70(18):A274. https://doi.org/10.1016/j.gca.2006.06.551
Jacob JH, Irshaid FI, Alhalib MA (2016) Estimation and identification of airborne bacteria and fungi in the outdoor atmosphere of Al-Mafraq area, Jordan. Jordan J Biol Sci 9(1):3–10. https://doi.org/10.12816/0027002
Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD et al (2017) Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). Mycosphere 8:1080–1101. https://doi.org/10.5943/mycosphere/8/8/9
Jensen BD, Knorr K, Nicolaisen M (2016) In vitro competition between Fusarium graminearum and Epicoccum nigrum on media and wheat grains. Eur J Plant Pathol 146(3):657–670. https://doi.org/10.1007/s10658-016-0950-6
Jones EG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers 4(193):53–73
Kasiri MB, Safapour S (2013) Natural dyes and antimicrobials for green treatment of textiles. Environ Chem Lett 12(1):1–13. https://doi.org/10.1007/s10311-013-0426-2
Katial RK, Zhang Y, Jones RH, Dyer PD (1997) Atmospheric mold spore counts in relation to meteorological parameters. Int J Biometeorol 41(1):17–22. https://doi.org/10.1007/s004840050048
Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3(12):937–947. https://doi.org/10.1038/nrmicro1286
Kemami Wangun HV, Hertweck C (2007) Epicoccarines A, B and epipyridone: tetramic acids and pyridone alkaloids from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. Org Biomol Chem 5(11):1702–1705. https://doi.org/10.1039/b702378b
Kemami Wangun HV, Ishida K, Hertweck C (2008) Epicoccalone, a coumarin-type chymotrypsin inhibitor, and isobenzofuran congeners from an Epicoccum sp. associated with a tree fungus. Eur J Org Chem 22:3781–3784. https://doi.org/10.1002/ejoc.200800447
Kim JJ, Kang SM, Choi YS, Kim GH (2007) Microfungi potentially disfiguring CCA treated wood. Int Biodeterior Biodegrad 60:197–201. https://doi.org/10.1016/j.ibiod.2007.05.002
Kinsey G, Paterson R, Kelley J (2003) Filamentous fungi in water systems. In: Handbook of water and wastewater microbiology. Academic Press, London, pp 77–98. https://doi.org/10.1016/b978-012470100-7/50006-6
Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, Hulcr J (2015) The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J 9(1):126–138. https://doi.org/10.1038/ismej.2014.115
Kotwal S, Sumbali G (2016) Preferential utilization and colonization of keratin baits by different myco-keratinophiles. Springerplus 5(1):1–6. https://doi.org/10.1186/s40064-016-2874-1
Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A et al (2019a) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management, Rhizobacteria in abiotic stress management, vol 1. Springer, Singapore, pp 255–308. https://doi.org/10.1007/978-981-13-6536-2_13
Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA et al (2019b) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, Perspective for value-added products and environments, vol 2. Springer International Publishing, Cham, pp 1–64. https://doi.org/10.1007/978-3-030-14846-1_1
Kour D, Kaur T, Devi R, Rana KL, Yadav N, Rastegari AA et al (2020a) Biotechnological applications of beneficial microbiomes for evergreen agriculture and human health. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam, pp 255–279. https://doi.org/10.1016/B978-0-12-820528-0.00019-3
Kour D, Rana KL, Yadav AN, Sheikh I, Kumar V, Dhaliwal HS et al (2020b) Amelioration of drought stress in Foxtail millet (Setaria italica L.) by P-solubilizing drought-tolerant microbes with multifarious plant growth promoting attributes. Environ Sustain 3:23–34. https://doi.org/10.1007/s42398-020-00094-1
Koutb M, Morsy FM (2011) A potent lipid producing isolate of Epicoccum purpurascens AUMC5615 and its promising use for biodiesel production. Biomass Bioenergy 35(7):3182–3187. https://doi.org/10.1016/j.biombioe.2011.04.050
Krumbein WE, Gorbushina AA (1995) On the interaction of water repellent treatments of building surfaces with organic pollution, microorganisms and microbial communities. In: Wittmann F, Siemes T, Verhoef L (eds) Surface treatment of building materials with water repellent agents. Delft University of Technology, Delft, pp 1–20
Kumar A, Verma H, Singh VK, Singh PP, Singh SK, Ansari WA et al (2017) Role of Pseudomonas sp. in sustainable agriculture and disease management. In: Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 195–215
Lebeau J, Venkatachalam M, Fouillaud M, Petit T, Vinale F, Dufossé L et al (2017) Production and new extraction method of polyketide red pigments produced by ascomycetous fungi from terrestrial and marine habitats. J Fungi (Basel, Switzerland) 3(3):34. https://doi.org/10.3390/jof3030034
Lee NH, Gloer JB, Wicklow DT (2007) Isolation of chromanone and isobenzofuran derivatives from a fungicolous isolate of Epicoccum purpurascens. Bull Kor Chem Soc 28(5):877–879. https://doi.org/10.5012/BKCS.2007.28.5.877
Li C, Sarotti AM, Yang B, Turkson J, Cao S (2017) A new N-methoxypyridone from the co-cultivation of Hawaiian endophytic fungi Camporesia sambuci FT1061 and Epicoccum sorghinum FT1062. Molecules 22(7):1166. https://doi.org/10.3390/molecules22071166
Li YM, Shaffer JP, Hall B, Ko H (2019) Soil-borne fungi influence seed germination and mortality, with implications for coexistence of desert winter annual plants. PLoS One 14(10):e0224417. https://doi.org/10.1371/journal.pone.0224417
Lin Z, Wei J, Zhang M, Xu S, Guo Q, Wang X et al (2015) Identification and characterization of a new fungal pathogen causing twisted leaf disease of sugarcane in China. Plant Dis 99(3):325–332. https://doi.org/10.1094/PDIS-06-14-0661-RE
Link HF (1816) Observationes in ordines plantarum naturales III. Magazin der Gesellschaft Naturforschender Freunde Berlin 7:37–38
Liu PQ, Wei MY, Zhu L, Wang RB, Li BJ, Weng QY et al (2018) First report of leaf spot on taro caused by Epicoccum sorghinum in China. Plant Dis 102(3):682–682. https://doi.org/10.1094/PDIS-11-16-1621-PDN
Ljaljević-Grbić MV, Vukojević JB (2009) Role of fungi in biodeterioration process of stone in historic buildings. Zbornik Matice Srpske Za Prirodne Nauke 116:245–251. https://doi.org/10.2298/zmspn0916245l
Luongo L, Galli M, Corazza L, Meekes E, Haas LD, Van Der Plas CL et al (2005) Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol Sci Tech 15(3):229–242. https://doi.org/10.1080/09583150400016852
Lyons TW, Wakefield DB, Cloutier MM (2011) Mold and Alternaria skin test reactivity and asthma in children in Connecticut. Ann Allergy Asthma Immunol 106(4):301–307. https://doi.org/10.1016/j.anai.2010.12.009
Madrigal C, Pascual S, Melgarejo P (1994) Biological control of peach twig blight (Monilinia laxa) with Epicoccum nigrum. Plant Pathol 43(3):554–561. https://doi.org/10.1111/j.1365-3059.1994.tb01590.x
Mahadevakumar S, Jayaramaiah KM, Janardhana GR (2014) First report of leaf spot disease caused by Epicoccum nigrum on Lablab purpureus in India. Plant Dis 98(2):284–284. https://doi.org/10.1094/PDIS-07-13-0798
Makhalanyane TP, Valverde A, Gunnigle E, Frossard A, Ramond JB, Cowan DA (2015) Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev 39(2):203–221. https://doi.org/10.1093/femsre/fuu011
Malik MA, Brien PO, Revaprasadu NA (2002) A simple route to the synthesis of core/shell nanoparticles of chalcogenides. Chem Mater 14(5):2004–2010. https://doi.org/10.1021/cm011154w
Mapari SA, Meyer AS, Thrane U (2008) Evaluation of Epicoccum nigrum for growth, morphology and production of natural colorants in liquid media and on a solid rice medium. Biotechnol Lett 30(12):2183–2190. https://doi.org/10.1007/s10529-008-9798-y
Mapari SAS, Meyer AS, Thrane U (2009) Photostability of natural orange-red and yellow fungal pigments in liquid food model systems. J Agric Food Chem 57(14):6253–6261. https://doi.org/10.1021/jf900113q
Mapari SAS, Thrane U, Meyer AS (2010) Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol 28(6):300–307. https://doi.org/10.1016/j.tibtech.2010.03.004
Marčiulynas A, Marčiulynienė D, Lynikienė J, Gedminas A, Vaičiukynė M, Menkis A (2020) Fungi and oomycetes in the irrigation water of forest nurseries. Forests 11(4):459. https://doi.org/10.3390/f11040459
Maslovskaya LA, Savchenko AI, Gordon VA, Reddell PW, Pierce CJ, Parsons PG et al (2015) EBC-316, 325–327, and 345: new pimarane diterpenes from Croton insularis found in the Australian rainforest. Aust J Chem 68(4):652. https://doi.org/10.1071/ch14550
Matei GM, Matei S, Mocanu V (2020) Assessing the role of soil microbial communities of natural forest ecosystem. EuroBiotech J 4(1):01–07. https://doi.org/10.2478/ebtj-2020-0001
Matsuda Y, Abe I (2016) Biosynthesis of fungal meroterpenoids. Nat Prod Rep 33(1):26–53. https://doi.org/10.1039/c5np00090d
McGinnis MR (2007) Indoor mould development and dispersal. Med Mycol 45(1):1–9. https://doi.org/10.1080/13693780600928495
Meier C, Petersen K (2006) Schimmelpilze auf Papier. Ein Handbuch für Restauratoren: Biologische Grundlagen, Erkennung, Behandlung und Prävention. Der Andere Verlag, Uelvesbüll, p 198
Mercer JA, Burns NZ (2015) Natural products: emulation illuminates biosynthesis. Nat Chem 7(11):860–861. https://doi.org/10.1038/nchem.2377
Mesquita N, Portugal A, Videira S, Rodríguez-Echeverría S, Bandeira AM, Santos MJ et al (2009) Fungal diversity in ancient documents. A case study on the Archive of the University of Coimbra. Int Biodeterior Biodegrad 63(5):626–629. https://doi.org/10.1016/j.ibiod.2009.03.010
Miller SL (1995) Functional diversity in fungi. Can J Bot 73:50–57. https://doi.org/10.1139/b95-224
Mims CW, Richardson EA (2005) Ultrastructure of sporodochium and conidium development in the anamorphic fungus Epicoccum nigrum. Can J Bot 83(10):1354–1363. https://doi.org/10.1139/b05-137
Mitakakis T, O’Meara T, Tovey E (2003) The effect of sunlight on allergen release from spores of the fungus Alternaria. Grana 42(1):43–46. https://doi.org/10.1080/00173130310008571
Mohamed MA (2015) One-step functionalization of silver nanoparticles using the orsellinic acid compound isolated from the endophytic fungus Epicoccum Nigrum: characterization and antifungal activity. Int J Nanomater Chem 1(3):103–110
Mosyagin AV, Knauf IV, Zelenskaya MS (2009) Deterioration of carbonate rocks used for archeological monuments in Tauric Chersonesos (Crimea). Stud UBB Geol 54(2):13–16. https://doi.org/10.5038/1937-8602.54.2.3
Moubahser AH, El-Naghy MA, Abdel-Fattah HM, Maghazy SM (1992) Keratinolytic fungi in Egyptian soils. I. Baited with hair and wool. Zentralbl Mikrobiol 147(8):529–535. https://doi.org/10.1016/s0232-4393(11)80382-3.
Mouli C, Mohan S, Reddy S (2005) Assessment of microbial (bacteria) concentrations of ambient air at semi-arid urban region: influence of meteorological factors. Appl Ecol Environ Res 3(2):139–149. https://doi.org/10.15666/aeer/0302_139149
Muhsin TM (2012) Aquatic fungi of Iraq: a review. Marsh Bull 7(1):39–47
Muhsin TM, Adlan MM (2012) Seasonal distribution pattern of outdoor airborne fungi in Basra city, southern Iraq. J Basrah Res 38(1):90–98
Murgia M, Fiamma M, Barac A, Deligios M, Mazzarello V, Paglietti B et al (2018) Biodiversity of fungi in hot desert sands. Microbiol Open 8(1):e00595. https://doi.org/10.1002/mbo3.595
Nagahama T, Nagano Y (2012) Cultured and uncultured fungal diversity in deep-sea environments. In: Raghukumar C (ed) Biology of marine fungi. Springer, Berlin, pp 173–187. https://doi.org/10.1007/978-3-642-23342-5_9
Nasar SA, Munshi JD (1980) Studies on the seasonal variations in the fungal population of a freshwater pond of Bhagalpur, India. Imnologica (Berlin) 12:137–139
Navi SS, Bandyopadhyay R, Reddy RK, Thakur RP, Yang XB (2005) Effects of wetness duration and grain development stages on sorghum grain mold infection. Plant Dis 89(8):872–878. https://doi.org/10.1094/PD-89-0872
Nitao J, Meyer S, Chitwood D, Schmidt W, Oliver J (2002) Isolation of flavipin, a fungus compound antagonistic to plant-parasitic nematodes. Nematology 4(1):55–63. https://doi.org/10.1163/156854102760082203
Noble JA, Crow SA, Ahearn DG, Kuhn FA (1997) Allergic fungal sinusitis in the southeastern USA: involvement of a new agent Epicoccum nigrum Ehrenb. ex Schlecht. 1824. Med Mycol 35(6):405–409. https://doi.org/10.1080/02681219780001501
Oliveira RC, Davenport KW, Hovde B, Silva D, Chain PS, Correa B et al (2017) Draft genome sequence of sorghum grain mold fungus Epicoccum sorghinum, a producer of tenuazonic acid. Genome Announc 5(4):e01495–e01516. https://doi.org/10.1128/genomeA.01495-16
Orwa P, Mugambi G, Wekesa V, Mwirichia R (2020) Isolation of haloalkaliphilic fungi from Lake Magadi in Kenya. Heliyon 6(1):e02823. https://doi.org/10.1016/j.heliyon.2019.e02823
Parikh RY, Singh S, Prasad BL, Patole MS, Sastry M, Shouche YS (2008) Extracellular synthesis of crystalline silver nanoparticles and molecular evidence of silver resistance from Morganella sp.: towards understanding biochemical synthesis mechanism. Chembiochem 9(9):1415–1422. https://doi.org/10.1002/cbic.200700592
Park D (1982) Phylloplane fungi: tolerance of hyphal tips to drying. Trans Br Mycol Soc 79(1):174–178
Parveen S, Wani AH, Shah MA, Devi HS, Bhat MY, Koka JA (2018) Preparation, characterization and antifungal activity of iron oxide nanoparticles. Microb Pathog 115:287–292. https://doi.org/10.1016/j.micpath.2017.12.068
Peng J, Jiao J, Li J, Wang W, Gu Q, Zhu T et al (2012) Pyronepolyene C-glucosides with NF-κB inhibitory and anti-influenza A viral (H1N1) activities from the sponge-associated fungus Epicoccum sp. JJY40. Bioorg Med Chem Lett 22(9):3188–3190. https://doi.org/10.1016/j.bmcl.2012.03.044
Pepeljnjak S, Šegvić M (2003) Occurrence of fungi in air and on plants in vegetation of different climatic regions in Croatia. Aerobiologia 19:11–19. https://doi.org/10.1023/A:1022693032075
Pereira RS, dos Santos HDH, Moraes OS, Júnior DPL, Hahn RC (2020) Children’s public health: danger of exposure to pathogenic fungi in recreational places in the middle-west region of Brazil. J Infect Public Health 13(1):51–57. https://doi.org/10.1016/j.jiph.2019.06.018
Perveen I, Raza MA, Iqbal T, Naz I, Sehar S, Ahmed S (2017) Isolation of anticancer and antimicrobial metabolites from Epicoccum nigrum; endophyte of Ferula sumbul. Microb Pathog 110:214–224. https://doi.org/10.1016/j.micpath.2017.06.033
Petersen HE (1905) Contributions a la connaissance des phycomycѐtes marins (Chytridineie Fischer). Oversigt K. Danske Vidensk, Seisk. Forhandi 5:439–488
Picco AM, Rodolfi M (2000) Airborne fungi as biocontaminants at two Milan underground stations. Int Biodeterior Biodegrad 45(1–2):43–47. https://doi.org/10.1016/s0964-8305(00)00047-0
Pitt JI, Hocking AD (2009) Fungi and food spoilage, vol 519, 3rd edn. Springer, New York, p 421
Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10(8):551–562. https://doi.org/10.1038/nrmicro2831
Pósfai M, Li J, Anderson JR, Buseck PR (2003) Aerosol bacteria over the Southern Ocean during ACE-1. Atmos Res 66(4):231–240. https://doi.org/10.1016/S0169-8095(03)00039-5
Qian Y, Yu H, He D, Yang H, Wang W, Wan X et al (2013) Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36(11):1613–1619. https://doi.org/10.1007/s00449-013-0937-z
Qiao K, Chooi YH, Tang Y (2011) Identification and engineering of the cytochalasin gene cluster from Aspergillus clavatus NRRL 1. Metab Eng 13(6):723–732. https://doi.org/10.1016/j.ymben.2011.09.008
Raistrick H, Rudman P (1956) Studies in the biochemistry of micro-organisms. 97. Flavipin, a crystalline metabolite of Aspergillus flavipes (Bainier and Sartory) Thom and Church and Aspergillus terreus Thom. Biochem J 63(3):395–406. https://doi.org/10.1042/bj0630395
Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6
Rana KL, Kour D, Yadav N, Yadav AN (2020) Endophytic microbes in nanotechnology: current development, and potential biotechnology applications. In: Kumar A, Singh VK (eds) Microbial endophytes. Woodhead Publishing, Cambridge, MA, pp 231–262. https://doi.org/10.1016/B978-0-12-818734-0.00010-3
Rastegari AA, Yadav AN, Yadav N (2019a) Genetic manipulation of secondary metabolites producers. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 13–29. https://doi.org/10.1016/B978-0-444-63504-4.00002-5
Rastegari AA, Yadav AN, Yadav N, Tataei Sarshari N (2019b) Bioengineering of secondary metabolites. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 55–68. https://doi.org/10.1016/B978-0-444-63504-4.00004-9
Rastegari AA, Yadav AN, Yadav N (2020a) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam
Rastegari AA, Yadav AN, Yadav N (2020b) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam
Resende MA, Resende GC, Viana EM, Becker TW, Warscheid T (1996) Acid production of fungi isolated from stones of historical monuments in the state of Minas Gerais, Brazil. Int Biodeterior Biodegrad 1(37):125. https://doi.org/10.1016/0964-8305(96)84357-5
Rizzi-Longo L, Pizzulin-Sauli M, Ganis P (2009) Seasonal occurrence of Alternaria (1993-2004) and Epicoccum (1994-2004) spores in Trieste (NE Italy). Ann Agric Environ Med 16(1):63–70
Sakayaroj J, Supaphon O, Jones EG, Phongpaichit S (2011) Diversity of higher marine fungi at Hat Khanom-Mu Ko Thale Tai National Park, Southern Thailand. Songklanakarin J Sci Technol 33(1):15–22
Sammon NB, Harrower KM, Fabbro LD, Reed RH (2010) Incidence and distribution of microfungi in a treated municipal water supply system in sub-tropical Australia. Int J Environ Res Public Health 7(4):1597–1611. https://doi.org/10.3390/ijerph7041597
Savino E, Caretta G (1992) Airborne fungi in an Italian rice mill. Aerobiologia 8:267–275. https://doi.org/10.1007/BF02071635
Scherlach K, Boettger D, Remme N, Hertweck C (2010) The chemistry and biology of cytochalasans. Nat Prod Rep 27(6):869–886. https://doi.org/10.1039/b903913a
Schol-Schwarz MB (1959) The genus Epicoccum link. Trans Br Mycol Soc 4(2):149–173
Schroeckh V, Scherlach K, Nützmann HW, Shelest E, Schmidt-Heck W, Schuemann J et al (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106(34):14558–14563. https://doi.org/10.1073/pnas.0901870106
Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109(6):661–686. https://doi.org/10.1017/s095375620500273x
Seth RK, Alam S, Shukla DN (2016) Isolation and identification of soil fungi from wheat cultivated area of Uttar Pradesh. J Plant Pathol Microbiol 7(11):384–386. https://doi.org/10.4172/2157-7471.1000384
Shah M, Fawcett D, Sharma S, Tripathy SK, Poinern GEJ (2015) Green synthesis of metallic nanoparticles via biological entities. Materials (Basel, Switzerland) 8(11):7278–7308. https://doi.org/10.3390/ma8115377
Shahid-ul-Islam S, Sun G (2017) Thermodynamics, kinetics, and multifunctional finishing of textile materials with colorants extracted from natural renewable sources. ACS Sustain Chem Eng 5(9):7451–7466. https://doi.org/10.1021/acssuschemeng.7b01486
Sheikhloo Z, Salouti M, Katiraee F (2011) Biological synthesis of gold nanoparticles by fungus Epicoccum nigrum. J Clust Sci 22(4):661–665. https://doi.org/10.1007/s10876-011-0412-4
Shelton BG, Kirkland KH, Flanders WD, Morris GK (2002) Profiles of airborne fungi in buildings and outdoor environments in the United States. Appl Environ Microbiol 68(4):1743–1753. https://doi.org/10.1128/aem.68.4.1743-1753.2002
Shephard GS, Thiel PG, Sydenham EW, Vleggaar R, Marasas WF (1991) Reversed-phase high-performance liquid chromatography of tenuazonic acid and related tetramic acids. J Chromatogr B Biomed Sci Appl 566(1):195–205. https://doi.org/10.1016/0378-4347(91)80124-U
Shimizu K, Ono T, Miyazawa M (2013) Highly selective and asymmetric reductive biotransformation of α-ionone by Epicoccum purpurascens. J Oleo Sci 62(4):231–234. https://doi.org/10.5650/jos.62.231
Shu YZ, Ye Q, Li H, Kadow KF, Hussain RA, Huang S et al (1997) Orevactaene,1 a novel binding inhibitor of HIV-1 rev protein to rev response element (RRE) from Epicoccum nigrum WC47880. Bioorg Med Chem Lett 7(17):2295–2298. https://doi.org/10.1016/s0960-894x(97)00407-1
Simmons EG (2007) Alternaria—an identification manual. Centraalbureau voor Schimmelcultures, CBF Fungal Biodiversity Centre, Utrecht
Simpson TJ (1987) Applications of multinuclear NMR to structural and biosynthetic studies of polyketide microbial metabolites. Chem Soc Rev 16:123–160. https://doi.org/10.1039/cs9871600123
Singh J, Yadav AN (2020) Natural bioactive products in sustainable agriculture. Springer, Singapore
Singh C, Tiwari S, Singh JS, Yadav AN (2020) Microbes in agriculture and environmental development. CRC Press, Boca Raton
Sisterna M, Lori G (2005) Fungal diseases on Lotus spp. in Argentina. Lotus Newsl 35(1):15–16
Somjaipeng S, Medina A, Kwaśna H, Ordaz Ortiz J, Magan N (2015) Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata). Fungal Biol 119(11):1022–1031. https://doi.org/10.1016/j.funbio.2015.07.007
Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18(4):380–416. https://doi.org/10.1039/a909079g
Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24(1–2):47–55. https://doi.org/10.1016/j.fbr.2010.03.003
Sterflinger K, Prillinger H (2001) Molecular taxonomy and biodiversity of rock fungal communities in an urban environment (Vienna, Austria). Antonie Van Leeuwenhoek 80(3–4):275–286. https://doi.org/10.1023/a:1013060308809
Sterflinger K, Tesei D, Zakharova K (2012) Fungi in hot and cold deserts with particular reference to microcolonial fungi. Fungal Ecol 5(4):453–462. https://doi.org/10.1016/j.funeco.2011.12.007
Stokholm MS, Wulff EG, Zida EP, Thio IG, Néya JB, Soalla RW et al (2016) DNA barcoding and isolation of vertically transmitted ascomycetes in sorghum from Burkina Faso: Epicoccum sorghinum is dominant in seedlings and appears as a common root pathogen. Microbiol Res 191:38–50. https://doi.org/10.1016/j.micres.2016.05.004
Stuart RM, Romão AS, Pizzirani-Kleiner AA, Azevedo JL, Araújo WL (2010) Culturable endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane and its non-transgenic isolines. Arch Microbiol 192(4):307–313. https://doi.org/10.1007/s00203-010-0557-9
Suleiman MK, Dixon K, Commander L, Nevill P, Quoreshi AM, Bhat NR et al (2019) Assessment of the diversity of fungal community composition associated with Vachellia pachyceras and its rhizosphere soil from Kuwait desert. Front Microbiol 10:1–18. https://doi.org/10.3389/fmicb.2019.00063
Sun HH, Mao WJ, Jiao JY, Xu JC, Li HY, Chen Y et al (2011) Structural characterization of extracellular polysaccharides produced by the marine fungus Epicoccum nigrum JJY-40 and their antioxidant activities. Mar Biotechnol (New York) 13(5):1048–1055. https://doi.org/10.1007/s10126-011-9368-5
Swer H, Dkhar MS, Kayang H (2011) Fungal population and diversity in organically amended agricultural soils of Meghalaya, India. J Org Syst 6(2):3–12
Swift MJ (2005) Human impacts on biodiversity and ecosystem services: an overview. Mycol Ser 23:627
Taguiam JD, Evallo E, Bengoa J, Maghirang R, Balendres MA (2020) Pathogenicity of Epicoccum sorghinum towards dragon fruits (Hylocereus species) and in vitro evaluation of chemicals with antifungal activity. J Phytopathol 168(6):303–310. https://doi.org/10.1111/jph.12893
Taia WK, Ismael MI, Bassioni E (2019) Study of the airborne fungal spores in Rosetta, Egypt. Eur J Exp Biol 9(1):4. https://doi.org/10.21767/2248-9215.100081
Tala MF, Qin J, Ndongo JT, Laatsch H (2017) New azulene-type sesquiterpenoids from the fruiting bodies of Lactarius deliciosus. Nat Prod Bioprospect 7(3):269–273. https://doi.org/10.1007/s13659-017-0130-1
Talontsi FM, Dittrich B, Schüffler A, Sun H, Laatsch H (2013) Epicoccolides: antimicrobial and antifungal polyketides from an endophytic fungus Epicoccum sp. associated with Theobroma cacao. Eur J Org Chem 15:3174–3180. https://doi.org/10.1002/ejoc.201300146
Temperini CV, Franchi ML, Rozo MEB, Greco M, Pardo AG, Pose GN (2019) Diversity and abundance of airborne fungal spores in a rural cold dry desert environment in Argentinean Patagonia. Sci Total Environ 665:513–520. https://doi.org/10.1016/j.scitotenv.2019.02.115
Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotechnol Biol Med 6:257–262. https://doi.org/10.1016/j.nano.2009.07.002
Urzì C, Krumbein WE (1994) Microbiological impacts on the cultural heritage. In: Durability and change: the science responsibility and cost of sustaining cultural heritage. Wiley, Chichester, pp 107–135
Uskokovic V (2008) Nanomaterials and nanotechnologies: approaching the crest of this big wave. Curr Nanosci 4(2):119–129. https://doi.org/10.2174/157341308784340903
Vaishnav P, Demain AL (2011) Unexpected applications of secondary metabolites. Biotechnol Adv 29(2):223–229. https://doi.org/10.1016/j.biotechadv.2010.11.006
Vannini A, Contarini M, Faccoli M, Valle MD, Rodriguez CM, Mazzetto T et al (2017) First report of the ambrosia beetle Xylosandrus compactus and associated fungi in the Mediterranean maquis in Italy, and new host–pest associations. EPPO Bull 47(1):100–103. https://doi.org/10.1111/epp.12358
Varanda CMR, Materatski P, Landum M, Campos MD, Félix MDR (2019) Fungal communities associated with peacock and cercospora leaf spots in olive. Plan Theory 8(6):169. https://doi.org/10.3390/plants8060169
Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58
Viaud M, Pasquier A, Brygoo Y (2000) Diversity of soil fungi studied by PCR-RFLP of ITS. Mycol Res 104(9):1027–1032. https://doi.org/10.1017/s0953756200002835
Wang JM, Ding GZ, Fang L, Dai JG, Yu SS, Wang YH et al (2010) Thiodiketopiperazines produced by the endophytic fungus Epicoccum nigrum. J Nat Prod 73(7):1240–1249. https://doi.org/10.1021/np1000895
Wang XN, Bashyal BP, Wijeratne EM, U’Ren JM, Liu MX, Gunatilaka MK et al (2011) Smardaesidins A-G, isopimarane and 20-nor-isopimarane diterpenoids from Smardaea sp., a fungal endophyte of the moss Ceratodon purpureus. J Nat Prod 74(10):2052–2061. https://doi.org/10.1021/np2000864
Wang JF, Lin XP, Qin C, Liao SR, Wan JT, Zhang TY et al (2014) Antimicrobial and antiviral sesquiterpenoids from sponge-associated fungus, Aspergillus sydowii ZSDS1-F6. J Antibiot 67(8):581–583. https://doi.org/10.1038/ja.2014.39
Wangun HV, Dahse HM, Hertweck C (2007) Epicoccamides B-D, glycosylated tetramic acid derivatives from an Epicoccum sp. associated with the tree fungus Pholiota squarrosa. J Nat Prod 70(11):1800–1803. https://doi.org/10.1021/np070245q
Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46(4):343–368. https://doi.org/10.1016/S0964-8305(00)00109-8
Weber RW (2006) On the cover. Aureobasidium pullulans. Ann Allergy Asthma Immunol 96(5):A6. https://doi.org/10.1016/s1081-1206(10)61056-3
Webster R, Pacey M, Winchester T, Johnson P, Jezequel S (1998) Microbial oxidative metabolism of diclofenac: production of 4′-hydroxydiclofenac using Epicoccum nigrum IMI354292. Appl Microbiol Biotechnol 49(4):371–376. https://doi.org/10.1007/s002530051184
Woo C, An C, Xu S, Yi SM, Yamamoto N (2018) Taxonomic diversity of fungi deposited from the atmosphere. ISME J 12(8):2051–2060. https://doi.org/10.1038/s41396-018-0160-7
Wright AD, Osterhage C, König GM (2003) Epicoccamide, a novel secondary metabolite from a jellyfish-derived culture of Epicoccum purpurascens. Org Biomol Chem 1(3):507–510. https://doi.org/10.1039/b208588g
Wu D, Zhang DH, Timko MP, Li MY, Liang GL (2017) First report of Epicoccum nigrum causing brown leaf spot of loquat in Southwestern China. Plant Dis 101(8):1553–1553. https://doi.org/10.1094/PDIS-12-16-1840-PDN
Xia X, Zhang J, Zhang Y, Wei F, Liu X, Jia A et al (2012) Pimarane diterpenes from the fungus Epicoccum sp. HS-1 associated with Apostichopus japonicus. Bioorg Med Chem Lett 22(8):3017–3019. https://doi.org/10.1016/j.bmcl.2012.01.055
Xia X, Qi J, Liu Y, Jia A, Zhang Y, Liu C et al (2015) Bioactive isopimarane diterpenes from the fungus, Epicoccum sp. HS-1, associated with Apostichopus japonicas. Mar Drugs 13(3):1124–1132. https://doi.org/10.3390/md13031124
Xiao Y, Li HX, Li C, Wang JX, Li J, Wang MH et al (2013) Antifungal screening of endophytic fungi from Ginkgo biloba for discovery of potent anti-phytopathogenic fungicides. FEMS Microbiol Lett 339(2):130–136. https://doi.org/10.1111/1574-6968.12065.
Yadav AN (2020) Recent trends in mycological research, Agricultural and medical perspective, vol 1. Springer, Cham
Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B et al (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5(6):45–57. https://doi.org/10.7324/JABB.2017.50607
Yadav AN, Kour D, Rana KL, Yadav N, Singh B, Chauhan VS et al (2019) Metabolic engineering to synthetic biology of secondary metabolites production. In: Gupta VK, Pandey A (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, Amsterdam, pp 279–320. https://doi.org/10.1016/B978-0-444-63504-4.00020-7
Yadav AN, Kour D, Kaur T, Devi R, Yadav N (2020a) Agriculturally important fungi for crop productivity: current research and future challenges. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer International Publishing, Cham, pp 275–286. https://doi.org/10.1007/978-3-030-45971-0_12
Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020b) Agriculturally important fungi for sustainable agriculture, Perspective for diversity and crop productivity, vol 1. Springer International Publishing, Cham
Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020c) Agriculturally important fungi for sustainable agriculture, Functional annotation for crop protection, vol 2. Springer International Publishing, Cham
Yadav AN, Rastegari AA, Gupta VK, Yadav N (2020d) Microbial biotechnology approaches to monuments of cultural heritage. Springer, Singapore
Yadav AN, Rastegari AA, Yadav N (2020e) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Taylor & Francis, Boca Raton
Yadav AN, Singh J, Rastegari AA, Yadav N (2020f) Plant microbiomes for sustainable agriculture. Springer, Cham
Yadav AN, Singh J, Singh C, Yadav N (2020g) Current trends in microbial biotechnology for sustainable agriculture. Springer, Singapore
Yan Z, Wen S, Ding M, Guo H, Huang C, Zhu X et al (2019) The purification, characterization, and biological activity of new polyketides from Mangrove-derived endophytic fungus Epicoccum nigrum SCNU-F0002. Mar Drugs 17(7):414. https://doi.org/10.3390/md17070414
Ye Y, Xiao Y, Ma L, Li H, Xie Z, Wang M et al (2013) Flavipin in Chaetomium globosum CDW7, an endophytic fungus from Ginkgo biloba, contributes to antioxidant activity. Appl Microbiol Biotechnol 97(16):7131–7139. https://doi.org/10.1007/s00253-013-5013-8
Yekeler H, Bitmiş K, Ozçelik N, Doymaz MZ, Çalta M (2001) Analysis of toxic effects of alternaria toxins on esophagus of mice by light and electron microscopy. Toxicol Pathol 29(4):492–497. https://doi.org/10.1080/01926230152499980
Yilmaz A, Cağlar P, Dirmenci T, Gören N, Topçu G (2012) A novel isopimarane diterpenoid with acetylcholinesterase inhibitory activity from Nepeta sorgerae, an endemic species to the Nemrut Mountain. Nat Prod Commun 7(6):693–696
Yuan GQ, Liao T, Tan HW, Li QQ, Lin W (2016) First report of leaf spot caused by Phoma sorghina on tobacco in China. Plant Dis 100(8):1790–1790. https://doi.org/10.1094/PDIS-11-15-1377-PDN
Zanardini E, Abbruscato P, Ghedini N, Realini M, Sorlini C (2000) Influence of atmospheric pollutants on the biodeterioration of stone. Int Biodeterior Biodegrad 45(1–2):35–42. https://doi.org/10.1016/s0964-8305(00)00043-3
Zhang Y, Liu S, Che Y, Liu X (2007) Epicoccins A-D, epipolythiodioxopiperazines from a Cordyceps-colonizing isolate of Epicoccum nigrum. J Nat Prod 70(9):1522–1525. https://doi.org/10.1021/np070239u
Zhang T, Jia RL, Yu LY (2016a) Diversity and distribution of soil fungal communities associated with biological soil crusts in the southeastern Tengger Desert (China) as revealed by 454 pyrosequencing. Fungal Ecol 23:156–163. https://doi.org/10.1016/j.funeco.2016.08.004
Zhang XF, Liu ZG, Shen W, Gurunathan S (2016b) Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 17(9):1534. https://doi.org/10.3390/ijms17091534
Zhou H, Liu PP, Qiu S, Wei SJ, Xia K, Gao Q (2018) Identity of Epicoccum sorghinum causing leaf spot disease of Bletilla striata in China. Plant Dis 102(5):1039–1039. https://doi.org/10.1094/PDIS-11-17-1757-pdn
Acknowledgement
I am grateful to Prof. Ahmed Mohamed Abdel-Azeem, the professor in Botany and Microbiology Department, Faculty of Science, University of Suez Canal, Ismailia, Egypt, and President of the Arab Society for the Preservation of Fungi, Egypt, for giving me his time and not being late when I sought guidance and advice and for continuous encouragement.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Abed, R.M. (2021). Exploring Fungal Biodiversity of Genus Epicoccum and Their Biotechnological Potential. In: Abdel-Azeem, A.M., Yadav, A.N., Yadav, N., Usmani, Z. (eds) Industrially Important Fungi for Sustainable Development. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-67561-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-67561-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67560-8
Online ISBN: 978-3-030-67561-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)