Skip to main content

Part of the book series: Mathematical Engineering ((MATHENGIN))

  • 446 Accesses

Abstract

The first documented mention of superheated liquid occurred in 1777 when the London Royal Society issued a recommendation to place a thermometer bulb not in boiling water itself, but rather in its vapors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In a more rigorous form this equation is known as the “thermal equation of state”.

  2. 2.

    In Fig. 12.2c this film is depicted as a blackened strip.

Abbreviations

ATHTC:

Averaged true heat transfer coefficient

EHTC:

Experimental heat transfer coefficient

HTC:

Heat transfer coefficient

THTC:

True heat transfer coefficient

b :

capillary constant

c p :

Isobaric heat capacity

Fo:

Fourier number

h :

Heat transfer coefficient (HTC)

h fg :

Heat of phase transition

h e :

Experimental heat transfer coefficient (EHTC)

K :

Curvature

k :

Thermal conductivity

\(m\,\) :

Growth modulus

n F :

Nucleation site density

\(p\) :

Pressure

\(R\) :

Bubble radius

\(q\) :

Heat flux

\(T\) :

Temperature

\(t\) :

Time

α :

Thermal diffusivity

δ :

Thickness

ε :

Conjugation parameter

ρ :

Density

v :

Kinematic viscosity

ϑ :

Temperature difference

\(\hat{\vartheta }\) :

Oscillating temperature

σ :

Surface tension

s :

Saturation state

spin:

State at spinodal

cr:

State at critical point

v:

Vapor

w :

State at wall

References

  1. Gibbs JW (1906) The scientific papers of J. Willard Gibbs (Longmans Green, London), vol 1, pp 252–258 (Reprinted by Dover, New York, 1961)

    Google Scholar 

  2. Vukalovich MP, Novikov II (1948) Equation of state of real gases. Gosenergoizdat, Moscow (In Russian)

    MATH  Google Scholar 

  3. Bjerre A, Bak TA (1969) Two-parameter equations of state. Acta Chem Scand 23:1733–1744

    Article  Google Scholar 

  4. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27(6):1197–1203

    Article  Google Scholar 

  5. Skripov VP (1974) Metastable liquid. Wiley, New York

    Google Scholar 

  6. Debenedetti PG (1996) Metastable liquids: concepts and principles. Princeton University Press, Princeton

    Google Scholar 

  7. Lahey RT (1992) Boiling heat transfer: modern developments and advances New York Elsevier

    Google Scholar 

  8. Stephan K (1992) Heat transfer in condensation and boiling. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  9. Zuber N (1958) On the stability of boiling heat transfer. ASME J Heat Transfer 80(2):711–772

    Google Scholar 

  10. Labuntsov DA (2000) Physical foundations of power engineering. Moscow Power Energetic Univ, Moscow (In Russian), Selected works

    Google Scholar 

  11. Birkhoff G, Margulis R, Horning W (1958) Spherical bubble growth. Phys. Fluids 1:201–204

    Article  MathSciNet  Google Scholar 

  12. Plesset MS, Zwick SA (1954) The growth of vapor bubbles in superheated liquids. J Appl Phys 25(4):493–500

    Article  MathSciNet  Google Scholar 

  13. Scriven LE (1959) On the dynamics of phase growth. Chem Eng Sci 10(1/2):1–14

    Article  Google Scholar 

  14. Zudin YB (2017) Theory of periodic conjugate heat transfer, 3rd ed. Springer

    Google Scholar 

  15. Urbano A, Tanguy S, Huber G, Colin C (2018) A direct numerical simulation of nucleate boiling in micro-layer regime. Int J Heat Mass Transf 123:1128–2113

    Article  Google Scholar 

  16. Gorenflo D (2002) Behältersieden (Sieden bei freier Konvektion). Springer, Berlin, VDI—Wärmeatlas, Hab

    Google Scholar 

  17. Wayner PC Jr, Coccio CL (1971) Heat and mass transfer in the vicinity of the triple interline of a meniscus. AIChE J 17:569–575

    Article  Google Scholar 

  18. Panchamgam SS, Chatterjee A, Plawsky JL, Wayner PC Jr (2008) Comprehensive experimental and theoretical study of fluid flow and heat transfer in a microscopic evaporating meniscus in a miniature heat exchanger. Int J Heat Mass Transf 51:5368–5379

    Article  Google Scholar 

  19. Stephan P, Kern J (2004) Evaluation of heat and mass transfer phenomena in nucleate boiling. Int J Heat Fluid Flow 25:140–148

    Article  Google Scholar 

  20. Ibrahem K, Schweizer N, Herbert S, Stephan P, Gambaryan-Roisman P (2012) The effect of three-phase contact line speed on local evaporative heat transfer: experimental and numerical investigations. Int J Heat Mass Transf 55:1896–1904

    Article  Google Scholar 

  21. Kunkelmann C (2011) Numerical modeling and investigation of boiling phenomena. PhD thesis. Technische Universität Darmstadt

    Google Scholar 

  22. Yagov V (2009) Nucleate boiling heat transfer: possibilities and limitations of theoretical analysis. Heat Mass Transf 45:881–892

    Article  Google Scholar 

  23. Zudin YB (1993) The calculation of parameters of the evaporating meniscus of a thin liquid film. High Temp 31(5):777–779

    Google Scholar 

  24. Pioro IL, Rohsenow W, Doerffer SS (2004) Nucleate pool-boiling heat transfer. I: review of parametric effects of boiling surface. Int J Heat Mass Transf 47: 5033–5044

    Google Scholar 

  25. Kenning D, Golobic I, Xing H et al (2006) Mechanistic models for pool nucleate boiling heat transfer: input and validation. Int J Heat Mass Transf 42: 511–527

    Google Scholar 

  26. Dhir VK (2006) Mechanistic prediction of nucleate boiling heat transfer–achievable or a hopeless task? ASME J Heat Transfer 123:1–12

    Article  Google Scholar 

  27. Dhir VK (2001) Numerical simulations of pool-boiling heat transfer. AIChE J 47:813–834

    Article  Google Scholar 

  28. Yu B, Cheng P (2002) A fractal model for nucleate pool boiling heat transfer. ASME J Heat Transfer 124:1117–1124

    Article  Google Scholar 

  29. Mandelbrot BB (1982) The fractal geometry of nature. Freeman WH (ed). New York

    Google Scholar 

  30. Eanshaw RA (ed) (1993) Application of fractals and chaos. Springer, Berlin

    Google Scholar 

  31. Stephan K (1963) Mechanismus und Modellgesetz des Wärmeübergangs bei der Blasenverdampfung. Chem-Ing-Tech 35(11):775–784

    Article  Google Scholar 

  32. Stephan K, Abdelsalam M (1980) Heat-transfer correlations for natural convection boiling. Int J Heat Mass Transfer 23:73–87

    Article  Google Scholar 

  33. Kenning D, Golobic I, Xing H et al (2006) Mechanistic models for pool nucleate boiling heat transfer: input and validation. Heat Mass Transf 42:511–527

    Article  Google Scholar 

  34. Qi Y, Klausner JF (2006) Comparison of nucleation site density for pool boiling and gas nucleation. ASME J Heat Transfer 128:13–20

    Article  Google Scholar 

  35. Benjamin RJ, Balakrishnan AR (1997) Nucleation site density in pool boiling of saturated pure liquids: effect of surface microroughness and surface and liquid physical properties. Exp Thermal Fluid Sci 15:32–42

    Article  Google Scholar 

  36. Sherman FS (1990) Viscous flow. McGraw-Hill

    Google Scholar 

  37. Rose JW (2004) Surface tension effects and enhancement of condensation heat transfer. Trans IChemE, Part a Chem Eng Res Des 82:419–429

    Article  Google Scholar 

  38. Wayner PC Jr, Kao YK, LaCroix LV (1976) The Interline heat transfer coefficient on an evaporating wetting film. Int J Heat Mass Transf 19:487–492

    Article  Google Scholar 

  39. Straub J (2001) Boiling heat transfer and bubble dynamics in microgravity. Adv. Heat Transfer 35:57–172

    Article  Google Scholar 

  40. Ametistov EV, Grigoriev VA, Pavlov YM (1972) Effect of thermophysical properties of heating surface material on heat transfer during boiling of water and ethanol. High Temp 10:821–823

    Google Scholar 

  41. Grigoriev VA, Pavlov YM, Ametisov EV, Klimenko AV, Klimenko VV (1977) Concerning the influence of thermal properties of heating surface material on heat transfer intensity of nucleate pool boiling of liquids including cryogenic ones. Cryogenics 2:94–96

    Article  Google Scholar 

  42. Labuntsov DA, Zudin YB (1984) Heat-transfer processes of periodic intensity. Energoatomizdat, Moscow (in Russian)

    Google Scholar 

  43. Piquet J (2002) Turbulent flows. Models Phys. Springer

    Google Scholar 

  44. Cebeci T (2002) Convective heat transfer. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  45. Carslaw HS, Jaeger JC (1992) Conduction of heat in solids. Clarendon Press, London, Oxford

    MATH  Google Scholar 

  46. Dietz C, Henze M, Neumann SO, von Wolfersdorf J, Weigand B (2005) Numerical and experimental investigation of heat transfer and fluid flow around a vortex generator using explicit algebraic models for the turbulent heat flux. In: Proceedings of the 17th international symposium on airbreathing engines, Munich, Germany, Paper ISABE-2005–1197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri B. Zudin .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zudin, Y.B. (2021). Nucleate Pool Boiling. In: Non-equilibrium Evaporation and Condensation Processes. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-67553-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67553-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67552-3

  • Online ISBN: 978-3-030-67553-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics