Abstract
A Dining Cryptographers network (DCnet for short) allows anonymous communication with sender and receiver untraceability even if an adversary has unlimited access to the connection metadata of the network. Originally introduced by David Chaum in the 1980s, DCnets were for a long time considered not practical for real-world applications because of the tremendous communication and computation overhead they introduce. However, technological innovations such as 5G networks and extremely powerful 64-bit processors make a good case to reassess the practicality of DCnets. In addition, recent advances in elliptic-curve based commitment schemes and Zero-Knowledge Proofs (ZKPs) provide a great opportunity to reduce the computational cost of modern DCnets that are able to detect malicious behavior of communicating parties. In this paper we introduce X64ECC, a self-contained library for Elliptic Curve Cryptography (ECC) developed from scratch to support all the public-key operations needed by modern DCnets: key exchange, digital signatures, Pedersen commitments, and ZKPs. X64ECC is written in C and uses compiler intrinsics to speed up performance-critical arithmetic operations. It is highly scalable and works with Montgomery curves and twisted Edwards curves of different cryptographic strength. Despite its high scalability and portability, X64ECC is able to compute a fixed-base scalar multiplication on a twisted Edwards curve over a 255-bit prime field in about 145,000 clock cycles on a modern Intel X64 processor. All cryptosystems can be adapted on-the-fly (i.e. without recompilation) to implement DCnets with arbitrary message sizes, and tradeoffs between the cryptographic strength and throughput of a DCnet are possible.
This research is part of the DCnets project, which is supported by the NLnet Foundation and the NGI Zero PET Fund, see https://nlnet.nl/project/DCnets.
This is a preview of subscription content, access via your institution.
Buying options


References
Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14
Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards curves. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 389–405. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9_26
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. J. Cryptogr. Eng. 2(2), 77–89 (2012)
Bernstein, D.J., Lange, T.: Montgomery curves and the montgomery ladder. Cryptology ePrint Archive, Report 2017/293 (2017). https://eprint.iacr.org/2017/293
Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new cryptographic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 159–176. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8_9
Bos, J., den Boer, B.: Detection of disrupters in the DC protocol. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 320–327. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_33
Camenisch, J., Stadler, M.: Proof systems for general statements about discrete logarithms. Technical report/ETH Zurich, Department of Computer Science 260 (1997)
Chaum, D.: The dining cryptographers problem: unconditional sender and recipient untraceability. J. Cryptol. 1(1), 65–75 (1988)
Corrigan-Gibbs, H., Ford, B.: Dissent: accountable anonymous group messaging. In: Proceedings of the 17th ACM Conference on Computer and Communications Security, pp. 340–350 (2010)
Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)
Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H., Schwabe, P.: High-speed Curve25519 on 8-bit, 16-bit and 32-bit microcontrollers. Des. Codes Crypt. 77(2–3), 493–514 (2015)
Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Franck, C.: New directions for dining cryptographers. Master’s thesis, University of Luxembourg, 2008 (2008)
Franck, C.: Dining cryptographers with 0.924 verifiable collision resolution. Ann. UMCS Informatica 14(1), 49–59 (2014). https://doi.org/10.2478/umcsinfo-2014-0007
Franck, C., van de Graaf, J.: Dining cryptographers are practical (2014)
Franck, C., Großschädl, J.: Efficient implementation of Pedersen commitments using twisted Edwards curves. In: Bouzefrane, S., Banerjee, S., Sailhan, F., Boumerdassi, S., Renault, E. (eds.) MSPN 2017. LNCS, vol. 10566, pp. 1–17. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67807-8_1
Ghatpande, S., Großschädl, J., Liu, Z.: A family of lightweight twisted Edwards curves for the internet of things. In: Blazy, O., Yeun, C.Y. (eds.) WISTP 2018. LNCS, vol. 11469, pp. 193–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20074-9_14
Golle, P., Juels, A.: Dining cryptographers revisited. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 456–473. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_27
Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptography. Springer, New York (2004). https://doi.org/10.1007/b97644
Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards curves revisited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_20
Intel Corporation: Intel Core i7–9750H Processor (12M Cache, up to 4.50 GHz) Product Specifications. https://ark.intel.com/content/www/us/en/ark/products/191045/intel-core-i7-9750h-processor-12m-cache-up-to-4-50-ghz.html
Josefsson, S., Liusvaara, I.: Edwards-Curve Digital Signature Algorithm (EdDSA). Internet Research Task Force, Crypto Forum Research Group, RFC 8032, January 2017
Krasnova, A., Neikes, M., Schwabe, P.: Footprint scheduling for dining-cryptographer networks. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 385–402. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4_23
Langley, A., Hamburg, M., Turner, S.: Elliptic Curves for Security. RFC 7748, January 2016. https://doi.org/10.17487/RFC7748. https://rfc-editor.org/rfc/rfc7748.txt
Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_31
Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization. Math. Comput. 48(177), 243–264 (1987)
Öztürk, E., Guilford, J., Gopal, V.: Large integer squaring on intel architecture processors (2013). Intel white paper, available for download at http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/large-integer-squaring-ia-paper.pdf
Öztürk, E., Guilford, J., Gopal, V., Feghali, W.: New instructions supporting large integer arithmetic on intel architecture processors (2012). Intel white paper, available for download at http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-large-integer-arithmetic-paper.pdf
De la Cadena, W., Kaiser, D., Mitseva, A., Panchenko, A., Engel, T.: Analysis of multi-path onion routing-based anonymization networks. In: Foley, S.N. (ed.) DBSec 2019. LNCS, vol. 11559, pp. 240–258. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22479-0_13
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Pfitzmann, A.: Diensteintegrierende Kommunikationsnetze mit teilnehmerüberprüfbarem Datenschutz. Springer, Heidelberg (1990)
Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for bitcoin. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_20
Samsung: 6G - the next hyper-connected experience for all. Technical report, Samsung Research (2020)
Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_22
Vaillant, L.: Monocypher (2020). https://monocypher.org/manual/hash
Waidner, M.: Unconditional sender and recipient untraceability in spite of active attacks. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 302–319. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_32
Waidner, M., Pfitzmann, B.: The dining cryptographers in the disco: unconditional sender and recipient untraceability with computationally secure serviceability. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, p. 690. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_69
Wu, H., Wang, F.: A survey of noninteractive zero knowledge proof system and its applications. Sci. World J. 2014 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Dupont, B., Franck, C., Großschädl, J. (2021). Fast and Flexible Elliptic Curve Cryptography for Dining Cryptographers Networks. In: Bouzefrane, S., Laurent, M., Boumerdassi, S., Renault, E. (eds) Mobile, Secure, and Programmable Networking. MSPN 2020. Lecture Notes in Computer Science(), vol 12605. Springer, Cham. https://doi.org/10.1007/978-3-030-67550-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-67550-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67549-3
Online ISBN: 978-3-030-67550-9
eBook Packages: Computer ScienceComputer Science (R0)