Skip to main content

Overview of Sustainability, Sustainable Development and Sustainability Assessment: Concepts and Methods

  • Conference paper
  • First Online:
Energy Systems Evaluation (Volume 1)

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Sustainability and sustainable development have gradually caused wide public attention during recent years due to the increasing concerns on resources and environment. The United Nations formulated and adopted a plan of action to promote the process of sustainable development, which covered 17 sustainable development goals and 169 specific targets to integrate and balance the three pillars of sustainable development. In order to provide a better understanding of the related concepts of sustainability, this paper provides an overview to introduce the relevant background knowledge and concepts on sustainability, sustainable development, and sustainability evaluation methods. Sustainability assessment methods are roughly classified into six major categories in this context, including individual or set of indicators, composite indicators, socially responsible investment indicators, energy and material flow analysis, life cycle sustainability assessment (LCSA) and multi-criteria decision-making (MCDM), and environmental accounting. Basic information on the method categories and related methods are summarized and presented according to the literature review. A qualitative analysis and comparison for the six sustainability evaluation method categories are carried out to assess the ability and potential for sustainability evaluation of these methods. Results showed that LCSA combined with MCDM can work as a reliable sustainability evaluation tool to provide a relatively complete assessment. Environmental accounting and individual or set of indicators are inferior to the other categories under the considered criteria system. Three suggestions are proposed based on the analysis to guide future research on sustainability evaluation from the perspective of comprehensiveness, involvement of stakeholders, and follow-up investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullah L (2013) Fuzzy multi criteria decision making and its applications: a brief review of category. Procedia Soc Behav Sci 97:131–136. https://doi.org/10.1016/j.sbspro.2013.10.213

  2. ALwaer H, Clements-Croome DJ (2010) Key performance indicators (KPIs) and priority setting in using the multi-attribute approach for assessing sustainable intelligent buildings. Build Environ 45:799–807. https://doi.org/10.1016/j.buildenv.2009.08.019

  3. Alyami SH, Rezgui Y, Kwan A (2015) The development of sustainable assessment method for Saudi Arabia built environment: weighting system. Sustain Sci 10:167–178. https://doi.org/10.1007/s11625-014-0252-x

  4. Angelakoglou K, Gaidajis G (2015) A review of methods contributing to the assessment of the environmental sustainability of industrial systems. J Clean Prod. https://doi.org/10.1016/j.jclepro.2015.06.094

    Article  Google Scholar 

  5. Awasthi A, Chauhan SS (2011) Using AHP and Dempster-Shafer theory for evaluating sustainable transport solutions. Environ Model Softw 26:787–796. https://doi.org/10.1016/j.envsoft.2010.11.010

    Article  Google Scholar 

  6. Azapagic A, Perdan S (2000) Indicators of sustainable development for industry: a general framework. Process Saf Environ Prot 78:243–261. https://doi.org/10.1205/095758200530763

    Article  Google Scholar 

  7. Beloff B, Tanzil D, Lines M (2004) Sustainable development performance assessment. Environ Prog 23:271–276. https://doi.org/10.1002/ep.10045

    Article  Google Scholar 

  8. Bockstaller C, Guichard L, Keichinger O, Girardin P, Galan MB, Gaillard G (2009) Comparison of methods to assess the sustainability of agricultural systems: a review. Sustain Agric 769–784. https://doi.org/10.1007/978-90-481-2666-8_47

  9. Bond A, Morrison-Saunders A, Pope J (2012) Sustainability assessment: the state of the art. Impact Assess Proj Apprais 30:53–62. https://doi.org/10.1080/14615517.2012.661974

    Article  Google Scholar 

  10. Brown MT, Herendeen RA (1996) Embodied energy analysis and emergy analysis: a comparative view. Ecol Econ 19:219–235. https://doi.org/10.1016/S0921-8009(96)00046-8

    Article  Google Scholar 

  11. Brown MT, Ulgiati S (2004) Energy quality, emergy, and transformity: H.T. Odum’s contributions to quantifying and understanding systems. Ecol Modell 178:201–213. https://doi.org/10.1016/j.ecolmodel.2004.03.002

    Article  Google Scholar 

  12. Brunner PH (2012) Substance flow analysis: a key tool for effective resource management brunner, substance flow analysis: a key tool for effective resource management. J Ind Ecol 16:293–295. https://doi.org/10.1111/j.1530-9290.2012.00496.x

    Article  Google Scholar 

  13. Buchholz T, Rametsteiner E, Volk TA, Luzadis VA (2009) Multi criteria analysis for bioenergy systems assessments. Energy Policy 37:484–495. https://doi.org/10.1016/j.enpol.2008.09.054

    Article  Google Scholar 

  14. Bueno PC, Vassallo JM, Cheung K (2015) Sustainability assessment of transport infrastructure projects: a review of existing tools and methods. Transp Rev 35:622–649. https://doi.org/10.1080/01441647.2015.1041435

    Article  Google Scholar 

  15. Campos-Guzmán V, García-Cáscales MS, Espinosa N, Urbina A (2019) Life cycle analysis with multi-criteria decision making: a review of approaches for the sustainability evaluation of renewable energy technologies. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2019.01.031

  16. Capra F, Luisi PL (2012) The systems view of life: a unifying vision. In: The systems view of life. https://doi.org/10.1017/CBO9780511895555

  17. Cinelli M, Coles SR, Kirwan K (2014) Analysis of the potentials of multi criteria decision analysis methods to conduct sustainability assessment. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2014.06.011

  18. Ciroth A, Finkbeiner M, Hildenbrand J, Klöpffer W, Mazijn B, Prakash S, Sonnemann G, Traverso M, Ugaya CML, Valdivia S, Vickery-Niederman G (2011) Towards a life cycle sustainability assessment

    Google Scholar 

  19. Colantonio A (2009) Social sustainability: a review and critique of traditional versus emerging themes and assessment methods. In: Sue-mot conference on 2009 second international conference on whole life urban sustain. Its Assess, pp 865–885

    Google Scholar 

  20. Costanza R, Patten BC (1995) Defining and predicting sustainability. Ecol. Econ. https://doi.org/10.1016/0921-8009(95)00048-8

  21. Elliott JA (2008) An introduction to sustainable development: routledge perspectives on development. Int J Sustain High Educ. https://doi.org/10.1108/ijshe.2008.24909cae.004

    Article  Google Scholar 

  22. Ferri N (2010) United nations general assembly. Int J Mar Coast Law 25:271–287. https://doi.org/10.1163/157180910X12665776638740

    Article  Google Scholar 

  23. Gasparatos A (2010) Embedded value systems in sustainability assessment tools and their implications. J Environ Manage. https://doi.org/10.1016/j.jenvman.2010.03.014

    Article  Google Scholar 

  24. Gbededo MA, Liyanage K, Garza-Reyes JA (2018) Towards a Life cycle sustainability analysis: a systematic review of approaches to sustainable manufacturing. J Clean Prod 184:1002–1015. https://doi.org/10.1016/j.jclepro.2018.02.310

    Article  Google Scholar 

  25. Geisler G, Hellweg S, Hungerbühler K (2005) Uncertainty analysis in Life cycle assessment (LCA): case study on plant-protection products and implications for decision making. Int J Life Cycle Assess 184–192. https://doi.org/10.1065/lca2004.09.178

  26. Gibassier D, Alcouffe, S (2018) Environmental management accounting: the missing link to sustainability? Soc Environ Account J. https://doi.org/10.1080/0969160X.2018.1437057

  27. Gil J, Duarte JP (2013) Tools for evaluating the sustainability of urban design: a review. Proc Inst Civ Eng Urban Des Plan. https://doi.org/10.1680/udap.11.00048

  28. Gómez-Baggethun E, Ruiz-Pérez M (2011) Economic valuation and the commodification of ecosystem services. Prog Phys Geogr. https://doi.org/10.1177/0309133311421708

  29. Griggs D, Stafford-Smith M, Gaffney O, Rockström J, Öhman MC, Shyamsundar P, Steffen W, Glaser G, Kanie N, Noble I (2013) Policy: sustainable development goals for people and planet. Nature. https://doi.org/10.1038/495305a

    Article  Google Scholar 

  30. Guo M, Murphy RJ (2012) LCA data quality: sensitivity and uncertainty analysis. Sci. Total Environ. 435–436:230–243. https://doi.org/10.1016/j.scitotenv.2012.07.006

    Article  Google Scholar 

  31. Hanley N, Spash CL (1993) Cost-benefit analysis and the environment. cost–benefit. Anal Environ. https://doi.org/10.2307/2235480

  32. Hermann BG, Kroeze C, Jawjit W (2007) Assessing environmental performance by combining life cycle assessment, multi-criteria analysis and environmental performance indicators. J Clean Prod 15:1787–1796. https://doi.org/10.1016/j.jclepro.2006.04.004

    Article  Google Scholar 

  33. Hsieh TY, Lu ST, Tzeng GH (2004) Fuzzy MCDM approach for planning and design tenders selection in public office buildings. Int J Proj Manage 22:573–584. https://doi.org/10.1016/j.ijproman.2004.01.002

    Article  Google Scholar 

  34. Huang CL, Vause J, Ma HW, Yu CP (2012) Using material/substance flow analysis to support sustainable development assessment: a literature review and outlook. Resour Conserv Recycl. https://doi.org/10.1016/j.resconrec.2012.08.012

  35. Huijbregts MAJ, Rombouts LJA, Hellweg S, Frischknecht R, Hendriks AJ, Van De Meent D, Ragas AMI, Reijnders L, Struijs J (2006) Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ Sci Technol 40:641–648. https://doi.org/10.1021/es051689g

    Article  Google Scholar 

  36. Huijbregts MAJ, Thissen U, Guinée JB, Jager T, Kalf D, Van De Meent D, Ragas AMJ, Wegener Sleeswijk A, Reijnders L (2000) Priority assessment of toxic substances in life cycle assessment. Part I: calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES-LCA. Chemosphere 41:541–573. https://doi.org/https://doi.org/10.1016/S0045-6535(00)00030-8

  37. IUCN/UNEP/WWF (1991) Caring for the Earth: a strategy for sustainable living. Caring Earth Strateg Sustain Living

    Google Scholar 

  38. James P (2014) Urban sustainability in theory and practice. Urban Sustain Theory Pract. https://doi.org/10.4324/9781315765747

    Article  Google Scholar 

  39. Jayawickrama HMMM, Kulatunga AK, Mathavan S (2017) Fuzzy AHP based plant sustainability evaluation method. Procedia Manuf 8:571–578. https://doi.org/10.1016/j.promfg.2017.02.073

    Article  Google Scholar 

  40. Keeble BR (1988) The Brundtland report: “Our Common Future.” Med War 4:17–25. https://doi.org/10.1080/07488008808408783

    Article  Google Scholar 

  41. Kloepffer W (2008) Life cycle sustainability assessment of products (with Comments by Helias A. Udo de Haes, p 95). Int J Life Cycle Assess 13:89–95. https://doi.org/10.1065/lca2008.02.376

    Article  Google Scholar 

  42. Koellner T, Scholz RW (2008) Assessment of land use impacts on the natural environment: part 2: generic characterization factors for local species diversity in Central Europe. Int J Life Cycle Assess. https://doi.org/10.1065/lca2006.12.292.2

  43. Koellner T, Scholz RW (2007) Assessment of land use impacts on the natural environment: part 1: an analytical framework for pure land occupation and land use change. J Life Cycle Assess Int. https://doi.org/10.1065/lca2006.12.292.1

  44. Koellner T, Suh S, Weber O, Moser C, Scholz RW (2007) Environmental impacts of conventional and sustainable investment funds compared using input-output life-cycle assessment. J Ind Ecol 11:41–60. https://doi.org/10.1162/jiec.2007.1147

    Article  Google Scholar 

  45. Labuschagne C, Brent AC, Van Erck RPG (2005) Assessing the sustainability performances of industries. J Clean Prod 13:373–385. https://doi.org/10.1016/j.jclepro.2003.10.007

    Article  Google Scholar 

  46. Lélé SM (1991) Sustainable development: a critical review. World Dev 19:607–621. https://doi.org/10.1016/0305-750X(91)90197-P

    Article  Google Scholar 

  47. Lu Y, Nakicenovic N, Visbeck M, Stevance AS (2015) Policy: five priorities for the un sustainable development Goals. Nature. https://doi.org/10.1038/520432a

    Article  Google Scholar 

  48. Ludwig D, Brock WA, Carpenter SR (2005) Uncertainty in discount models and environmental accounting. Ecol Soc 10. https://doi.org/10.5751/ES-01586-100213

  49. Luthra S, Mangla SK, Kharb RK (2015) Sustainable assessment in energy planning and management in Indian perspective. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2015.03.007

  50. Magee L, Scerri A, James P, Thom JA, Padgham L, Hickmott S, Deng H, Cahill F (2013) Reframing social sustainability reporting: towards an engaged approach. Environ Dev Sustain 15:225–243. https://doi.org/10.1007/s10668-012-9384-2

    Article  Google Scholar 

  51. Mardani A, Jusoh A, Zavadskas EK (2015) Fuzzy multiple criteria decision-making techniques and applications—two decades review from 1994 to 2014. Appl Expert Syst. https://doi.org/10.1016/j.eswa.2015.01.003

  52. Moll S, Schmidt-Bleek F (1998) Material flow-based indicators in environmental reporting with contributions from. Business

    Google Scholar 

  53. Mota B, Isabel M, Carvalho A, Barbosa-povoa AP (2015) Towards supply chain sustainability: economic, environmental and social design and planning. J Clean Prod 105:14–27. https://doi.org/10.1016/j.jclepro.2014.07.052

    Article  Google Scholar 

  54. Ness B, Urbel-Piirsalu E, Anderberg S, Olsson L (2007) Categorising tools for sustainability assessment. Ecol Econ https://doi.org/10.1016/j.ecolecon.2006.07.023

  55. Onions C, T (1964) The shorter Oxford english dictionary. Clarendon Press, Oxford

    Google Scholar 

  56. Pandey D, Agrawal M, Pandey JS (2011) Carbon footprint: current methods of estimation. Environ Monit Assess 178:135–160. https://doi.org/10.1007/s10661-010-1678-y

    Article  Google Scholar 

  57. da Pereira EJS, Pinho JT, Galhardo MAB, Macêdo WN (2014) Methodology of risk analysis by Monte Carlo Method applied to power generation with renewable energy. Renew Energy 69:347–355. https://doi.org/10.1016/j.renene.2014.03.054

  58. Poveda CA, Lipsett M (2011) A review of sustainability assessment and sustainability/environmental rating systems and credit weighting tools. J Sustain Dev 4:36–55. https://doi.org/10.5539/jsd.v4n6p36

    Article  Google Scholar 

  59. Renganath K, Suresh M (2017) Supplier selection using fuzzy MCDM techniques: a literature review. In: 2016 IEEE international conference on computational intelligence and computing research ICCIC 2016. https://doi.org/10.1109/ICCIC.2016.7919590

  60. Rezaei J (2015) Best-worst multi-criteria decision-making method. Omega (United Kingdom) 53:49–57. https://doi.org/10.1016/j.omega.2014.11.009

  61. Rincón L, Castell A, Pérez G, Solé C, Boer D, Cabeza LF (2013) Evaluation of the environmental impact of experimental buildings with different constructive systems using material flow analysis and life cycle assessment. Appl Energy 109:544–552. https://doi.org/10.1016/j.apenergy.2013.02.038

    Article  Google Scholar 

  62. Robeco SAM, A (2013) Dow Jones sustainability world index guide. S&P Dow Jones indices. version 12.1. Zurich, Switzerland.

    Google Scholar 

  63. Rossi R, Gastaldi M, Gecchele G (2013) Comparison of fuzzy-based and AHP methods in sustainability evaluation: a case of traffic pollution-reducing policies. Eur Transp Res Rev 5:11–26. https://doi.org/10.1007/s12544-012-0086-5

    Article  Google Scholar 

  64. Russell S (2008) Socially responsible investment. Invest Manage Financ Manage 137–146. https://doi.org/10.1002/9780470404324.hof002014

  65. Saaty RW (1987) The analytic hierarchy process-what it is and how it is used. Math Model 9:161–176. https://doi.org/10.1016/0270-0255(87)90473-8

    Article  MathSciNet  MATH  Google Scholar 

  66. Sala S, Ciuffo B, Nijkamp P (2015) A systemic framework for sustainability assessment. Ecol Econ 119:314–325. https://doi.org/10.1016/j.ecolecon.2015.09.015

    Article  Google Scholar 

  67. Sala S, Farioli F, Zamagni A (2013) Progress in sustainability science: lessons learnt from current methodologies for sustainability assessment: part 1. Int J Life Cycle Assess 18:1653–1672. https://doi.org/10.1007/s11367-012-0508-6

    Article  Google Scholar 

  68. Sala S, Farioli F, Zamagni A (2013) Life cycle sustainability assessment in the context of sustainability science progress (part 2). Int J Life Cycle Assess 18:1686–1697. https://doi.org/10.1007/s11367-012-0509-5

    Article  Google Scholar 

  69. Saling P, Kicherer A, Dittrich-Krämer B, Wittlinger R, Zombik W, Schmidt I, Schrott W, Schmidt S (2002) Eco-efficiency analysis by BASF: the method. Int J Life Cycle Assess 7:203–218. https://doi.org/10.1007/BF02978875

    Article  Google Scholar 

  70. Schmidt-Bleek F (2001) MIPS and ecological rucksacks in designing the future. In: Proceedings—2nd international symposium on environmentally conscious design and inverse manufacturing, pp 1–8. https://doi.org/10.1109/ECODIM.2001.992306

  71. Scopus (2020) Scopus preview [WWW Document]. https://www.scopus.com/. Accessed 7 Mar 20

  72. Singh RK, Murty HR, Gupta SK, Dikshit AK (2009) An overview of sustainability assessment methodologies. Indic Ecol. https://doi.org/10.1016/j.ecolind.2008.05.011

  73. Székely F, Knirsch M (2005) Responsible leadership and corporate social responsibility: metrics for sustainable performance. Eur Manage J 23:628–647. https://doi.org/10.1016/j.emj.2005.10.009

    Article  Google Scholar 

  74. Talukder B, Hipel KW, van Loon GW (2017) Developing composite indicators for agricultural sustainability assessment: effect of normalization and aggregation techniques. Resources 6. https://doi.org/10.3390/resources6040066

  75. Tarpani RRZ, Azapagic A (2018) Life cycle costs of advanced treatment techniques for wastewater reuse and resource recovery from sewage sludge. J Clean Prod 204:832–847. https://doi.org/10.1016/j.jclepro.2018.08.300

    Article  Google Scholar 

  76. Traverso M, Asdrubali F, Francia A, Finkbeiner M (2012) Towards life cycle sustainability assessment: an implementation to photovoltaic modules. Int J Life Cycle Assess 17:1068–1079. https://doi.org/10.1007/s11367-012-0433-8

    Article  Google Scholar 

  77. Turkson C, Acquaye A, Liu W, Papadopoulos T (2020) Sustainability assessment of energy production: a critical review of methods, measures and issues. J Environ Manage 264:110464. https://doi.org/10.1016/j.jenvman.2020.110464

    Article  Google Scholar 

  78. Van Zelm R, Huijbregts MAJ, Van De Meent D (2009) USES-LCA 2.0-a global nested multi-media fate, exposure, and effects model. Int J Life Cycle Assess https://doi.org/10.1007/s11367-009-0066-8

  79. Veleva V, Ellenbecker M (2001) Indicators of sustainable production: framework and methodology. J Clean Prod 9:519–549. https://doi.org/10.1016/S0959-6526(01)00010-5

  80. Venkatachalam L (2004) The contingent valuation method: a review. environ. Impact Assess Rev 24:89–124. https://doi.org/10.1016/S0195-9255(03)00138-0

  81. Wackernagel M, Rees WE (1996) Our ecological footprints: reducing human impact on the earth. New Society Publishers, Gabriola Island, BC, Canada

    Google Scholar 

  82. Wang JJ, Jing YY, Zhang CF, Zhao JH (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew Sustain Energy Rev. https://doi.org/10.1016/j.rser.2009.06.021

  83. Willet J, Wetser K, Vreeburg J, Rijnaarts HHM (2019) Review of methods to assess sustainability of industrial water use. Water Resour Ind 21. https://doi.org/10.1016/j.wri.2019.100110

Download references

Acknowledgements

This study was financially supported by the grant from the Research Committee of The Hong Kong Polytechnic University under student account code RK2B and the Hong Kong Research Grants Council for Early Career Scheme (Grant No. 25208118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingzheng Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Y., Ren, J. (2021). Overview of Sustainability, Sustainable Development and Sustainability Assessment: Concepts and Methods. In: Ren, J. (eds) Energy Systems Evaluation (Volume 1). Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-67529-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67529-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67528-8

  • Online ISBN: 978-3-030-67529-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics