Skip to main content

Posterior Reversible Encephalopathy Syndrome (PRES) and Meningo-Encephalitis in COVID

  • Chapter
  • First Online:
Neuroimaging of Covid-19. First Insights based on Clinical Cases

Abstract

Neurological symptoms described in COVID-19 infected patients can also occur in a more inflammatory related setting as in case of posterior reversible encephalopathy syndrome (PRES) that can be associated with SARS-CoV2 infection due to the massive cytokine storm, damage to endothelium and vasogenic oedema. At brain imaging, quite symmetric bilateral focal or confluent vasogenic oedema with posterior parietal and occipital lobe involvement are found. In severe cases like in COVID-setting, PRES can be complicated by ischemia or haemorrhage: we then describe in the atlas two cases of classic and complicated COVID-related PRES.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hinchey J, Chaves C, Appignani B, et al. A reversible posterior leukoencephalopathy syndrome. N Engl J Med. 1996;334(8):494–500. https://doi.org/10.1056/NEJM199602223340803.

    Article  CAS  PubMed  Google Scholar 

  2. Bartynski WS. Posterior reversible encephalopathy syndrome, part 1 and 2: fundamental imaging and clinical features. AJNR Am J Neuroradiol. 2008;29:1036–42. https://doi.org/10.3174/ajnr.A0928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bakshi R, Bates VE, Mechtler LL, et al. Occipital lobe seizures as the major clinical manifestation of reversible posterior leukoencephalopathy syndrome: magnetic resonance imaging findings. Epilepsia. 1998;39(3):295–9. https://doi.org/10.1111/j.1528-1157.1998.tb01376.x.

    Article  CAS  PubMed  Google Scholar 

  4. Fugate JE, Claassen DO, Cloft HJ, et al. Posterior reversible encephalopathy syndrome: associated clinical and radiologic findings. Mayo Clin Proc. 2010;85(5):427–32. https://doi.org/10.4065/mcp.2009.0590.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Miller TR, Shivashankar R, Mossa-Basha M, et al. Reversible cerebral vasoconstriction syndrome, part 1: epidemiology, pathogenesis, and clinical course. AJNR Am J Neuroradiol. 2015;36:1392–9. https://doi.org/10.3174/ajnr.A4214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schwartz RB, Jones KM, Kalina P, et al. Hypertensive encephalopathy: findings on CT, MR imaging, and SPECT imaging in 14 cases. AJR Am J Roentgenol. 1992;159:379–83. https://doi.org/10.2214/ajr.159.2.1632361.

    Article  CAS  PubMed  Google Scholar 

  7. Calabrese LH, Dodick DW, Schwedt TJ, et al. Narrative review: reversible cerebral vasoconstriction syndromes. Ann Intern Med. 2007;146:34–44. https://doi.org/10.7326/0003-4819-146-1-200701020-00007.

    Article  PubMed  Google Scholar 

  8. Chen SP, Fuh JL, Wang SJ, et al. Magnetic resonance angiography in reversible cerebral vasoconstriction syndromes. Ann Neurol. 2010;67:648–56. https://doi.org/10.1002/ana.21951.

    Article  PubMed  Google Scholar 

  9. Aird WC. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood. 2003;101:3765–77. https://doi.org/10.1182/blood-2002-06-1887.

    Article  CAS  PubMed  Google Scholar 

  10. Bartynski WS, Tan HP, Boardman JF, et al. Posterior reversible encephalopathy syndrome after solid organ transplantation. AJNR Am J Neuroradiol. 2008;29:924–30. https://doi.org/10.3174/ajnr.A0960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gupta S, Kaplan MJ. Pathogenesis of systemic lupus erythematosus. Rheumatology. 7th ed. Philadelphia, PA: Elsevier; 2019. p. 1154–9.

    Google Scholar 

  12. Loscalzo J. Endothelial injury, vasoconstriction, and its prevention. Tex Heart Inst J. 1995;22:180–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sandoo A, van Zanten JJ, Metsios GS, et al. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 2010;4:302–12. https://doi.org/10.2174/1874192401004010302.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Franceschi AM, Ahmed O, Giliberto L, et al. Hemorrhagic posterior reversible encephalopathy syndrome as a manifestation of COVID-19 infection. AJNR Am J Neuroradiol. 2020;41(7):1173–6. https://doi.org/10.3174/ajnr.A6595.

    Article  CAS  PubMed  Google Scholar 

  15. Hernández-Fernández F, Valencia HS, Barbella-Aponte RA, et al. Cerebrovascular disease in patients with COVID-19: neuroimaging, histological and clinical description. Brain. 2020;143:3089. https://doi.org/10.1093/brain/awaa239.

    Article  PubMed  Google Scholar 

  16. Filatov A, Sharma P, Hindi F, et al. Neurological complications of coronavirus (COVID-19): encephalopathy. Cureus. 2020;12:e7352. https://doi.org/10.7759/cureus.7352.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–4. https://doi.org/10.1016/S0140-6736(20)30628-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011;364:656–65. https://doi.org/10.1056/NEJMra0910283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartels K, Grenz A, Eltzschig HK. Hypoxia and inflammation are two sides of the same coin. Proc Natl Acad Sci U S A. 2013;110:18351–2. https://doi.org/10.1073/pnas.1318345110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosa Junior M, Borges EI, Fonseca APA, et al. Posterior reversible encephalopathy syndrome during treatment with tocilizumab in juvenile idiopathic arthritis. Arq Neuropsiquiatr. 2018;76:720–1. https://doi.org/10.1590/0004-282X20180093.

    Article  PubMed  Google Scholar 

  21. Cross SN, Ratner E, Rutherford TJ, et al. Bevacizumab-mediated interference with VEGF signalling is sufficient to induce a preeclampsia-like syndrome in nonpregnant women. Rev Obstet Gynecol. 2012;5:2–8.

    PubMed  PubMed Central  Google Scholar 

  22. McKinney AM, Short J, Truwit CL, et al. Posterior reversible encephalopathy syndrome: incidence of atypical regions of involvement and imaging findings. AJR Am J Roentgenol. 2007;189:904–12. https://doi.org/10.2214/AJR.07.2024.

    Article  PubMed  Google Scholar 

  23. Levitt M, Zampolin R, Burns J, et al. Posterior reversible encephalopathy syndrome and reversible cerebral vasoconstriction syndrome. Distinct Clinical Entities with Overlapping Pathophysiology. Radiol Clin N Am. 2019;57:1133–46. https://doi.org/10.1016/j.rcl.2019.07.001.

    Article  PubMed  Google Scholar 

  24. Covarrubias DJ, Luetmer PH, Campeau NG. Posterior reversible encephalopathy syndrome: prognostic utility of quantitative diffusion-weighted MR images. AJNR Am J Neuroradiol. 2002;23:1038–4.

    PubMed  Google Scholar 

  25. Eichler FS, Wang P, Wityk RJ, et al. Diffuse metabolic abnormalities in reversible posterior leukoencephalopathy syndrome. AJNR Am J Neuroradiol. 2002;23(5):833–7.

    PubMed  Google Scholar 

  26. Hefzy HM, Bartynski WS, Boardman JF, et al. Hemorrhage in posterior reversible encephalopathy syndrome: imaging and clinical features. AJNR Am J Neuroradiol. 2009;30(7):1371–9. https://doi.org/10.3174/ajnr.A1588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cruz-Flores S, de Assis Aquino Gondim F, Leira EC. Brainstem involvement in hypertensive encephalopathy: clinical and radiological findings. Neurology. 2004;62(8):1417–9. https://doi.org/10.1212/01.wnl.0000120668.73677.5f.

    Article  PubMed  Google Scholar 

  28. Pilato F, Distefano M, Calandrelli R. Posterior reversible encephalopathy syndrome and reversible cerebral vasoconstriction syndrome: clinical and radiological considerations. Front Neurol. 2020;11:34. https://doi.org/10.3389/fneur.2020.00034.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Muttikkal TJ, Wintermark M. MRI patterns of global hypoxic-ischemic injury in adults. J Neuroradiol. 2013;40:164–71. https://doi.org/10.1016/j.neurad.2012.08.002.

    Article  PubMed  Google Scholar 

  30. Wijdicks EF, Campeau NG, Miller GM. MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol. 2001;22:1561–5.

    CAS  PubMed  Google Scholar 

  31. Ho ML, Rojas R, Eisenberg RL. Cerebral edema. AJR Am J Roentgenol. 2012;199:W258–73. https://doi.org/10.2214/AJR.11.8081.

    Article  PubMed  Google Scholar 

  32. Coolen T, Lolli V, Sadeghi N, et al. Early postmortem brain MRI findings in COVID-19 non-survivors. Neurology. 2020;95(14):e2016–27. https://doi.org/10.1212/WNL.0000000000010116.

    Article  CAS  PubMed  Google Scholar 

  33. Anand P, Lau HV, Chung DY, et al. Posterior reversible encephalopathy syndrome in patients with coronavirus disease 2019: two cases and a review of the literature. J Stroke Cerebrovasc Dis. 2020;29(11):105212.

    Article  Google Scholar 

  34. Gaensbauer JT, Press CA, Hollister JR, et al. Procalcitonin: a marker of infection not subverted by treatment with interleukin-6 receptor inhibition. Pediatr Infect Dis J. 2013;32(9):1040. https://doi.org/10.1097/INF.0b013e318295a3d0.

    Article  PubMed  Google Scholar 

  35. Kotani K, Miyamoto M, Ando H. The effect of treatments for rheumatoid arthritis on endothelial dysfunction evaluated by flow-mediated vasodilation in patients with rheumatoid arthritis. Curr Vasc Pharmacol. 2016;15(1):10–8. https://doi.org/10.2174/1570161114666161013113457.

    Article  CAS  Google Scholar 

  36. Vallejo S, Palacios E, Romacho T, et al. The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats. Cardiovasc Diabetol. 2014;13:158. https://doi.org/10.1186/s12933-014-0158-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ikonomidis I, Lekakis JP, Nikolaou M, et al. Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation. 2008;117(20):2662–9. https://doi.org/10.1161/CIRCULATIONAHA.107.731877.

    Article  CAS  PubMed  Google Scholar 

  38. Doo FX, Kassim G, Lefton DR, et al. Rare presentations of COVID-19: PRES-like leukoencephalopathy and carotid thrombosis. Clin Imaging. 2020;69:94–101. https://doi.org/10.1016/j.clinimag.2020.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rogg J, Baker A, Tung G. Posterior reversible encephalopathy syndrome (PRES): another imaging manifestation of COVID-19. Interdiscip Neurosurg. 2020;22:100808. https://doi.org/10.1016/j.inat.2020.100808.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jayaraman K, Rangasami R, Chandrasekharan A. Magnetic resonance imaging findings in viral encephalitis: a pictorial essay. J Neurosci Rural Pract. 2018;9(4):556–60. https://doi.org/10.4103/jnrp.jnrp_120_18.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Egdell R, Egdell D, Solomon T. Herpes simplex virus encephalitis. BMJ. 2012;344:e3630. https://doi.org/10.1136/bmj.e3630.

    Article  PubMed  Google Scholar 

  42. Steiner I, Budka H, Chaudhuri A, et al. Viral meningoencephalitis: a review of diagnostic methods and guidelines for management. Eur J Neurol. 2010;17(8):999–e57. https://doi.org/10.1111/j.1468-1331.2010.02970.x.

    Article  CAS  PubMed  Google Scholar 

  43. Gupta RK, Soni N, Kumar S, et al. Imaging of central nervous system viral diseases. J Magn Reson Imaging. 2012;35(3):477–91. https://doi.org/10.1002/jmri.22830.

    Article  PubMed  Google Scholar 

  44. Finkenstaedt M, Szudra A, Zerr I, et al. MR imaging of Creutzfeldt-Jakob disease. Radiology. 1996;199(3):793–8. https://doi.org/10.1148/radiology.199.3.8638007.

    Article  CAS  PubMed  Google Scholar 

  45. Becker JT, Maruca V, Kingsley LA, et al. Multicenter AIDS Cohort Study. Factors affecting brain structure in men with HIV disease in the post-HAART era. Neuroradiology. 2011;54(2):113–21. https://doi.org/10.1007/s00234-011-0854-.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shah R, Bag AK, Chapman PR, et al. Imaging manifestations of progressive multifocal leukoencephalopathy. Clin Radiol. 2010;65(6):431–9. https://doi.org/10.1016/j.crad.2010.03.001.

    Article  CAS  PubMed  Google Scholar 

  47. Misra UK, Kalita J, Phadke RV, et al. Usefulness of various MRI sequences in the diagnosis of viral encephalitis. Acta Trop. 2010;116(3):206–11. https://doi.org/10.1016/j.actatropica.2010.08.007.

    Article  CAS  PubMed  Google Scholar 

  48. Molimard J, Baudou E, Mengelle C, et al. Coxsackie B3-induced rhombencephalitis. Arch Pediatr. 2019;26(4):247–8. https://doi.org/10.1016/j.arcped.2019.02.013.

    Article  CAS  PubMed  Google Scholar 

  49. Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: a systematic review. J Neurol Sci. 2020;413:116832. https://doi.org/10.1016/j.jns.2020.116832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hernandez-Fernandez F, Valencia HS, Barbella-Aponte RA, et al. Cerebrovascular disease in patients with COVID-19: neuroimaging, histological and clinical description. Brain. 2020;143:3089. https://doi.org/10.1093/brain/awaa239.

    Article  PubMed  Google Scholar 

  51. Mahammedi A, Saba L, Vagal A, et al. Imaging in neurological disease of hospitalized COVID-19 patients: an Italian multicenter retrospective observational study. Radiology. 2020;297:E270. https://doi.org/10.1148/radiol.2020201933.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Merkler AE, Parikh NS, Mir S, et al. Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol. 2020;77:1. https://doi.org/10.1001/jamaneurol.2020.2730.

    Article  Google Scholar 

  53. Garg RK, Paliwal VK, Gupta A. Encephalopathy in patients with COVID-19: a review. J Med Virol. 2020:1–17. https://doi.org/10.1002/jmv.26207.

  54. Baig AM, Khaleeq A, Ali U, et al. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020;11(7):995–8. https://doi.org/10.1021/acschemneuro.0c00174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis. 2020;94:55–8. https://doi.org/10.1016/j.ijid.2020.03.062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Russell B, Moss C, Rigg A, et al. Anosmia and ageusia are emerging as symptoms in patients with COVID-19: what does the current evidence say? Ecancermedicalscience. 2020;14:ed98. https://doi.org/10.3332/ecancer.2020.ed98.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hamming I, Timens W, Bulthuis M, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203:631–7. https://doi.org/10.1002/path.1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tai W, He L, Zhang X, et al. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020;17:613–20. https://doi.org/10.1038/s41423-020-0400-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lau SK, Woo PC, Yip CC, et al. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol. 2006;44(6):2063–71. https://doi.org/10.1128/JCM.02614-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. MacNamara KC, Chua MM, Phillips JJ, et al. Contributions of the viral genetic background and a single amino acid substitution in an immunodominant CD8+ T-cell epitope to murine coronavirus neurovirulence. J Virol. 2005;79(14):9108–18. https://doi.org/10.1128/JVI.79.14.9108-9118.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mehta P, McAuley DF, Brown M, et al. HLH Across Speciality Collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4. https://doi.org/10.1016/S0140-6736(20)30628-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Al-Olama M, Rashid A, Garozzo D. COVID-19-associated meningoencephalitis complicated with intracranial hemorrhage: a case report. Acta Neurochir. 2020;162(7):1495–9. https://doi.org/10.1007/s00701-020-04402-w.

    Article  PubMed  Google Scholar 

  63. Dogan L, Kaya D, Sarikaya T, et al. Plasmapheresis treatment in COVID-19-related autoimmune meningoencephalitis: case series. Brain Behav Immun. 2020;87:155–8. https://doi.org/10.1016/j.bbi.2020.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Piechotta V, Chai KL, Valk SJ, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: a living systematic review. Cochrane Database Syst Rev. 2020;7(7):CD013600. https://doi.org/10.1002/14651858.CD013600.pub2.

    Article  PubMed  Google Scholar 

  65. Zambreanu L, Lightbody S, Bhandari M, et al. A case of limbic encephalitis associated with asymptomatic COVID-19 infection. J Neurol Neurosurg Psychiatry. 2020;91:1229. https://doi.org/10.1136/jnnp-2020-323839.

    Article  PubMed  Google Scholar 

  66. Varatharaj A, Thomas N, Ellul MA, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020;7(10):875–82. https://doi.org/10.1016/S2215-0366(20)30287-X.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Xiong W, Mu J, Guo J, et al. New onset neurologic events in people with COVID-19 in 3 regions in China. Neurology. 2020;95(11):e1479–87. https://doi.org/10.1212/WNL.0000000000010034.

    Article  CAS  PubMed  Google Scholar 

  68. Pons-Escoda A, Naval-Baudín P, Majós C, et al. Neurologic Involvement in COVID-19: cause or coincidence? A neuroimaging perspective. AJNR Am J Neuroradiol. 2020;41(8):1365–9. https://doi.org/10.3174/ajnr.A6627.

    Article  CAS  PubMed  Google Scholar 

  69. Chougar L, Shor N, Weiss N, et al. CoCo Neurosciences study group. Retrospective observational study of brain magnetic resonance imaging findings in patients with acute SARS-CoV-2 infection and neurological manifestations. Radiology. 2020;297:E313. https://doi.org/10.1148/radiol.2020202422.

    Article  PubMed  Google Scholar 

  70. Montalvan V, Lee J, Bueso T, et al. Neurological manifestations of COVID-19 and other coronavirus infections: a systematic review. Clin Neurol Neurosurg. 2020;194:105921. https://doi.org/10.1016/j.clineuro.2020.105921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guilmot A, Maldonado Slootjes S, et al. Immune-mediated neurological syndromes in SARS-CoV-2-infected patients. J Neurol. 2020:1–7. https://doi.org/10.1007/s00415-020-10108-x.

  72. Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré syndrome associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574–6. https://doi.org/10.1056/NEJMc2009191.

    Article  PubMed  Google Scholar 

  73. Gutiérrez-Ortiz C, Méndez-Guerrero A, Rodrigo-Rey S, et al. Miller Fisher syndrome and polyneuritis cranialis in COVID-19. Neurology. 2020;95(5):e601–5. https://doi.org/10.1212/WNL.0000000000009619.

    Article  CAS  PubMed  Google Scholar 

  74. Pilotto A, Odolini S, Masciocchi S, et al. Steroid-responsive encephalitis in coronavirus disease 2019. Ann Neurol. 2020;88:423. https://doi.org/10.1002/ana.25783.

    Article  CAS  PubMed  Google Scholar 

  75. Scullen T, Keen J, Mathkour M, et al. Coronavirus 2019 (COVID-19)-associated encephalopathies and cerebrovascular disease: the New Orleans experience. World Neurosurg. 2020;141:e437–46. https://doi.org/10.1016/j.wneu.2020.05.192.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zuhorn F, Omaimen H, Ruprecht B, et al. Parainfectious encephalitis in COVID-19: “The Claustrum Sign”. J Neurol. 2020:1–4. https://doi.org/10.1007/s00415-020-10185-y.

  77. Yoshikawa K, Kuwahara M, Morikawa M, et al. Varied antibody reactivities and clinical relevance in anti-GQ1b antibody-related diseases. Neurol Neuroimmunol Neuroinflamm. 2018;5(6):e501. https://doi.org/10.1212/NXI.0000000000000501.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chi MS, Ng SH, Chan LY. Asymmetric acute motor axonal neuropathy with unilateral tongue swelling mimicking stroke. Neurologist. 2016;21(6):106–8. https://doi.org/10.1097/NRL.0000000000000102.

    Article  PubMed  Google Scholar 

  79. Hayashi M, Sahashi Y, Baba Y, et al. COVID-19-associated mild encephalitis/encephalopathy with a reversible splenial lesion. J Neurol Sci. 2020;415:116941. https://doi.org/10.1016/j.jns.2020.116941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wong PF, Craik S, Newman P, et al. Lessons of the month 1: a case of rhombencephalitis as a rare complication of acute COVID-19 infection. Clin Med (Lond). 2020;20(3):293–4. https://doi.org/10.7861/clinmed.2020-0182.

    Article  Google Scholar 

  81. Paterson RW, Brown RL, Benjamin L, et al. UCL Queen Square National Hospital for Neurology and Neurosurgery COVID-19 Study Group. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020;143:3104. https://doi.org/10.1093/brain/awaa240.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Virhammar J, Kumlien E, Fällmar D, et al. Acute necrotizing encephalopathy with SARS-CoV-2 RNA confirmed in cerebrospinal fluid. Neurology. 2020;95(10):445–9. https://doi.org/10.1212/WNL.0000000000010250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Cases 1 and 2 of Sect. 4.1 and Case 2 of Sect. 4.2 courtesy of:

  • E. D’Adda, MD; M.E. Fruguglietti, MD; Neurologist Stroke Unit Cerebrovascular Dept; ASST Crema Hospital

  • M. Borghetti MD, G. Benelli MD; Radiology Unit, Cerebrovascular Dept; ASST Crema Hospital

  • G. Merli MD, G. Lupi MD, Department of Anesthesia and Critical Care Medicine, ASST Crema Hospital

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simonetta Gerevini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manara, O., Pezzetti, G., Gerevini, S. (2021). Posterior Reversible Encephalopathy Syndrome (PRES) and Meningo-Encephalitis in COVID. In: Gerevini M.D., S. (eds) Neuroimaging of Covid-19. First Insights based on Clinical Cases. Springer, Cham. https://doi.org/10.1007/978-3-030-67521-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67521-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67520-2

  • Online ISBN: 978-3-030-67521-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics