Skip to main content

Evolution and Function of the Extrinsic Subunits of Photosystem II

Part of the Advances in Photosynthesis and Respiration book series (AIPH,volume 47)

Keywords

  • Calcium ion
  • Chloride ion
  • Extrinsic subunits
  • Molecular evolution
  • Oxygen-evolving complex
  • Photosystem II
  • Proton-exit channel
  • Thylakoid lumen

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-67407-6_16
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-67407-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   279.99
Price excludes VAT (USA)
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 16.1.
Fig. 16.2.
Fig. 16.3.
Fig. 16.4.
Fig. 16.5.

References

  • Adachi H, Umena Y, Enami I, Henmi T, Kamiya N, Shen JR (2009) Towards structural elucidation of eukaryotic photosystem II: purification, crystallization and preliminary X-ray diffraction analysis of photosystem II from a red alga. Biochim Biophys Acta 1787:121–128

    CAS  PubMed  Google Scholar 

  • Ago H, Adachi H, Umena Y, Tashiro T, Kawakami K, Kamiya N, Tian L, …, Shen JR (2016) Novel features of eukaryotic photosystem II revealed by its crystal structure analysis from a red alga. J Biol Chem 291:5676–5687

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akabori K, Imaoka A, Toyoshima Y (1984) The role of lipids and 17-kDa protein in enhancing the recovery of O2 evolution in cholate-treated thylakoid membranes. FEBS Lett 173:36–40

    CAS  CrossRef  Google Scholar 

  • Åkerlund HE, Jansson C, Andersson B (1982) Reconstitution of photosynthetic water splitting in inside-out thylakoid vesicles and identification of a participating polypeptide. Biochim Biophys Acta 681:1–10

    CrossRef  Google Scholar 

  • Allahverdiyeva Y, Suorsa M, Rossi F, Pavesi A, Kater MM, Antonacci A, Tadini L, …, Pesaresi P (2013) Arabidopsis plants lacking PsbQ and PsbR subunits of the oxygen-evolving complex show altered PSII super-complex organization and short-term adaptive mechanisms. Plant J 75:671–684

    CAS  PubMed  CrossRef  Google Scholar 

  • Asada M, Nishimura T, Ifuku K, Mino H (2018) Location of the extrinsic subunit PsbP in photosystem II studied by pulsed electron-electron double resonance. Biochim Biophys Acta 1859:394–399

    CAS  CrossRef  Google Scholar 

  • Balsera M, Arellano JB, Revuelta JL, de las Rivas J, Hermoso JA (2005) The 1.49 Å resolution crystal structure of PsbQ from photosystem II of Spinacia oleracea reveals a PPII structure in the N-terminal region. J Mol Biol 350:1051–1060

    CAS  PubMed  CrossRef  Google Scholar 

  • Bommer M, Bondar AN, Zouni A, Dobbek H, Dau H (2016) Crystallographic and computational analysis of the barrel part of the PsbO protein of photosystem II: carboxylate-water clusters as putative proton transfer relays and structural switches. Biochemistry 55:4626–4635

    CAS  PubMed  CrossRef  Google Scholar 

  • Bondar AN, Dau H (2012) Extended protein/water H-bond networks in photosynthetic water oxidation. Biochim Biophys Acta 1817:1177–1190

    CAS  PubMed  CrossRef  Google Scholar 

  • Bricker TM, Roose JL, Fagerlund RD, Frankel LK, Eaton-Rye JJ (2012) The extrinsic proteins of photosystem II. Biochim Biophys Acta 1817:121–142

    CAS  PubMed  Google Scholar 

  • Bricker TM, Roose JL, Zhang P, Frankel LK (2013) The PsbP family of proteins. Photosynth Res 116:235–250

    CAS  PubMed  CrossRef  Google Scholar 

  • Brzezowski P, Wilson KE, Gray GR (2012) The PSBP2 protein of Chlamydomonas reinhardtii is required for singlet oxygen-dependent signaling. Planta 236:1289–1303

    CAS  PubMed  CrossRef  Google Scholar 

  • Calderone V, Trabucco M, Vujicić A, Battistutta R, Giacometti GM, Andreucci F, Barbato R, Zanotti G (2003) Crystal structure of the PsbQ protein of photosystem II from higher plants. EMBO Rep 4:900–905

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Che Y, Kusama S, Matsui S, Suorsa M, Nakano T, Aro EM, Ifuku K (2020) Arabidopsis PsbP-like protein 1 facilitates the assembly of the photosystem II supercomplexes and optimizes plant fitness under fluctuating light. Plant Cell Physiol 61:1168–1180

    CAS  PubMed  CrossRef  Google Scholar 

  • Cao P, Xie Y, Li M, Pan X, Zhang H, Zhao X, Su X, …, Chang W (2015) Crystal structure analysis of extrinsic PsbP protein of photosystem II reveals a manganese-induced conformational change. Mol Plant 8:664–666

    CAS  PubMed  CrossRef  Google Scholar 

  • Cormann KU, Bartsch M, Rögner M, Nowaczyk MM (2014) Localization of the CyanoP binding site on photosystem II by surface plasmon resonance spectroscopy. Front Plant Sci 5:595

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cox N, Messinger J (2013) Reflections on substrate water and dioxygen formation. Biochim Biophys Acta 1827:1020–1030

    CAS  PubMed  CrossRef  Google Scholar 

  • Dau H, Zaharieva I, Haumann M (2012) Recent developments in research on water oxidation by photosystem II. Curr Opin Chem Biol 16:3–10

    CAS  PubMed  CrossRef  Google Scholar 

  • De Las Rivas J, Roman A (2005) Structure and evolution of the extrinsic proteins that stabilize the oxygen-evolving engine. Photochem Photobiol Sci 4:1003–1010

    CrossRef  CAS  Google Scholar 

  • De Las Rivas J, Balsera M, Barber J (2004) Evolution of oxygenic photosynthesis: genome-wide analysis of the OEC extrinsic proteins. Trends Plant Sci 9:18–25

    CrossRef  CAS  Google Scholar 

  • Enami I, Murayama H, Ohta H, Kamo M, Nakazato K, Shen JR (1995) Isolation and characterization of a photosystem II complex from the red alga Cyanidium caldarium: association of cytochrome c-550 and a 12 kDa protein with the complex. Biochim Biophys Acta 1232:208–216

    PubMed  CrossRef  Google Scholar 

  • Enami I, Kikuchi S, Fukuda T, Ohta H, Shen JR (1998) Binding and functional properties of four extrinsic proteins of photosystem II from a red alga, Cyanidium caldarium, as studied by release-reconstitution experiments. Biochemistry 37:2787–2793

    CAS  PubMed  CrossRef  Google Scholar 

  • Enami I, Yoshihara S, Tohri A, Okumura A, Ohta H, Shen JR (2000) Cross-reconstitution of various extrinsic proteins and photosystem II complexes from cyanobacteria, red algae and higher plants. Plant Cell Physiol 41:1354–1364

    CAS  PubMed  CrossRef  Google Scholar 

  • Enami I, Iwai M, Akiyama A, Suzuki T, Okumura A, Katoh T, Tada O, …, Shen JR (2003) Comparison of binding and functional properties of two extrinsic components, Cyt c550 and a 12 kDa protein, in cyanobacterial PSII with those in red algal PSII. Plant Cell Physiol 44:820–827

    CAS  PubMed  CrossRef  Google Scholar 

  • Enami I, Okumura A, Nagao R, Suzuki T, Iwai M, Shen JR (2008) Structures and functions of the extrinsic proteins of photosystem II from different species. Photosynth Res 98:349–363

    CAS  PubMed  CrossRef  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    CAS  PubMed  CrossRef  Google Scholar 

  • Ghanotakis DF, Topper JN, Babcock GT, Yocum CF (1984a) Water-soluble 17 and 23 kDa polypeptides restore oxygen evolution activity by creating a high-affinity binding site for Ca2+ on the oxidizing side of photosystem II. FEBS Lett 170:169–173

    CAS  CrossRef  Google Scholar 

  • Ghanotakis DF, Topper JN, Youcum CF (1984b) Structural organization of the oxidizing side of photosystem II. Exogenous reductants reduce and destroy the Mn-complex in photosystems II membranes depleted of the 17 and 23 kDa polypeptides. Biochim Biophys Acta 767:524–531

    CAS  CrossRef  Google Scholar 

  • Guerra F, Siemers M, Mielack C, Bondar A-N (2018) Dynamics of long-distance hydrogen-bond networks in photosystem II. J Phys Chem B 122:4625–4641

    CAS  PubMed  CrossRef  Google Scholar 

  • Guerrero F, Sedoud A, Kirilovsky D, Rutherford AW, Ortega JM, Roncel M (2011) A high redox potential form of cytochrome c550 in photosystem II from Thermosynechococcus elongatus. J Biol Chem 286:5985–5994

    Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial photosystem II at 2.9-Å resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16:334–342

    CAS  PubMed  CrossRef  Google Scholar 

  • Hall M, Kieselbach T, Sauer UH, Schröder WP (2012) Purification, crystallization and preliminary X-ray analysis of PPD6, a PsbP-domain protein from Arabidopsis thaliana. Acta Crystallogr Sect F 68:278–280

    CAS  CrossRef  Google Scholar 

  • Ido K, Ifuku K, Yamamoto Y, Ishihara S, Murakami A, Takabe K, Miyake C, Sato F (2009) Knockdown of the PsbP protein does not prevent assembly of the dimeric PSII core complex but impairs accumulation of photosystem II supercomplexes in tobacco. Biochim Biophys Acta 1787:873–881

    CAS  PubMed  CrossRef  Google Scholar 

  • Ido K, Kakiuchi S, Uno C, Nishimura T, Fukao Y, Noguchi T, Sato F, Ifuku K (2012) The conserved His-144 in the PsbP protein is important for the interaction between the PsbP N-terminus and the Cyt b559 subunit of photosystem II. J Biol Chem 287:26377–26387

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ido K, Nield J, Fukao Y, Nishimura T, Sato F, Ifuku K (2014) Cross-linking evidence for multiple interactions of the PsbP and PsbQ proteins in a higher plant photosystem II supercomplex. J Biol Chem 289:20150–20157

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ifuku K (2014) The PsbP and PsbQ family proteins in the photosynthetic machinery of chloroplasts. Plant Physiol Biochem 81:108–114

    CAS  PubMed  CrossRef  Google Scholar 

  • Ifuku K (2015) Localization and functional characterization of the extrinsic subunits of photosystem II: an update. Biosci Biotech Biochem 79:1223–1231

    CAS  CrossRef  Google Scholar 

  • Ifuku K, Noguchi T (2016) Structural coupling of extrinsic proteins with the oxygen-evolving center in photosystem II. Front Plant Sci 7:84

    PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ifuku K, Sato F (2001) Importance of the N-terminal sequence of the extrinsic 23 kDa polypeptide in photosystem II in ion retention in oxygen evolution. Biochim Biophys Acta 1546:196–204

    CAS  PubMed  CrossRef  Google Scholar 

  • Ifuku K, Nakatsu T, Kato H, Sato F (2004) Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum. EMBO Rep 5:362–367

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ifuku K, Nakatsu T, Shimamoto R, Yamamoto Y, Ishihara S, Kato H, Sato F (2005a) Structure and function of the PsbP protein of photosystem II from higher plants. Photosynth Res 84:251–255

    CAS  PubMed  CrossRef  Google Scholar 

  • Ifuku K, Yamamoto Y, Ono TA, Ishihara S, Sato F (2005b) PsbP protein, but not PsbQ protein, is essential for the regulation and stabilization of photosystem II in higher plants. Plant Physiol 139:1175–1184

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ifuku K, Ishihara S, Shimamoto R, Ido K, Sato F (2008) Structure, function, and evolution of the PsbP protein family in higher plants. Photosynth Res 98:427–437

    CAS  PubMed  CrossRef  Google Scholar 

  • Ifuku K, Ishihara S, Sato F (2010) Molecular functions of oxygen-evolving complex family proteins in photosynthetic electron flow. J Integr Plant Biol 52:723–734

    CAS  PubMed  CrossRef  Google Scholar 

  • Ifuku K, Ido K, Sato F (2011) Molecular functions of PsbP and PsbQ proteins in the photosystem II supercomplex. J Photochem Photobiol B 104:158–164

    CAS  PubMed  CrossRef  Google Scholar 

  • Ishihara S, Takabayashi A, Ido K, Endo T, Ifuku K, Sato F (2007) Distinct functions for the two PsbP-like proteins PPL1 and PPL2 in the chloroplast thylakoid lumen of Arabidopsis. Plant Physiol 145:668–679

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jackson SA, Fagerlund RD, Wilbanks SM, Eaton-Rye JJ (2010) Crystal structure of PsbQ from Synechocystis sp. PCC 6803 at 1.8 Å: implications for binding and function in cyanobacterial photosystem II. Biochemistry 49:2765–2767

    CAS  PubMed  CrossRef  Google Scholar 

  • Jackson SA, Hind MG, Eaton-Rye JJ (2012) Solution structure of CyanoP from Synechocystis sp. PCC 6803: new insights on the structural basis for functional specialization among PsbP family proteins. Biochim Biophys Acta 1817:1331–1338

    CAS  PubMed  CrossRef  Google Scholar 

  • Juneau AD, Frankel LK, Bricker TM, Roose JL (2016) N-terminal lipid modification is required for the stable accumulation of CyanoQ in Synechocystis sp. PCC 6803. PLoS One 11:e0163646

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  • Kakiuchi S, Uno C, Ido K, Nishimura T, Noguchi T, Ifuku K, Sato F (2012) The PsbQ protein stabilizes the functional binding of the PsbP protein to photosystem II in higher plants. Biochim Biophys Acta 1817:1346–1351

    CAS  PubMed  CrossRef  Google Scholar 

  • Kashino Y, Lauber WM, Carroll JA, Wang Q, Whitmarsh J, Satoh K, Pakrasi HB (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41:8004–8012

    CAS  PubMed  CrossRef  Google Scholar 

  • Kashino Y, Inoue-Kashino N, Roose JL, Pakrasi HB (2006) Absence of the PsbQ protein results in destabilization of the PsbV protein and decreased oxygen evolution activity in cyanobacterial photosystem II. J Biol Chem 281:20834–20841

    CAS  PubMed  CrossRef  Google Scholar 

  • Kern J, Chatterjee R, Young ID, Fuller FD, Lassalle L, Ibrahim M, Gul S, …, Yachandra VK (2018) Structures of the intermediates of Kok’s photosynthetic water oxidation clock. Nature 563:421–425

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Knoppová J, Yu J, Konik P, Nixon PJ, Komenda J (2016) CyanoP is involved in the early steps of photosystem II assembly in the cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 57:1921–1931

    PubMed  CrossRef  CAS  Google Scholar 

  • Kondo J, Noguchi T (2018) PsbP-induced protein conformational changes around cl− ions in the water oxidizing center of photosystem II. Photosynthetica 56:178–184

    CAS  CrossRef  Google Scholar 

  • Kopecky V Jr, Kohoutova J, Lapkouski M, Hofbauerova K, Sovova Z, Ettrichova O, González-Pérez S, …, Ettrich R (2012) Raman spectroscopy adds complementary detail to the high-resolution X-ray cystal structure of photosynthetic PsbP from Spinacia oleracea. PLoS One 7:e46694

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Kuwabara T, Murata N (1982) Inactivation of photosynthetic oxygen evolution and concomitant release of three polypeptides in the photosystem II particles of spinach chloroplasts. Plant Cell Physiol 23:533–539

    CAS  CrossRef  Google Scholar 

  • Kuwabara T, Miyao M, Murata T, Murata N (1985) The function of 33-kDa protein in the photosynthetic oxygen-evolution system studied by reconstitution experiments. Biochim Biophys Acta 806:283–289

    CAS  CrossRef  Google Scholar 

  • Linke K, Ho FM (2014) Water in photosystem II: structural, functional and mechanistic considerations. Biochim Biophys Acta 1837:14–32

    CAS  PubMed  CrossRef  Google Scholar 

  • Liu J, Yang H, Lu Q, Wen X, Chen F, Peng L, Zhang L, Lu C (2012) PsbP-domain protein1, a nuclear-encoded thylakoid lumenal protein, is essential for photosystem I assembly in Arabidopsis. Plant Cell 24:4992–5006

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Liu H, Zhang H, Weisz DA, Vidavsky I, Gross ML, Pakrasi HB (2014) MS-based cross-linking analysis reveals the location of the PsbQ protein in cyanobacterial photosystem II. Proc Natl Acad Sci USA 111:4638–4643

    Google Scholar 

  • Liu H, Weisz DA, Pakrasi HB (2015) Multiple copies of the PsbQ protein in a cyanobacterial photosystem II assembly intermediate complex. Photosynth Res 126:375–383

    CAS  PubMed  CrossRef  Google Scholar 

  • Lorch S, Capponi S, Pieront F, Bondar AN (2015) Dynamic carboxylate/water networks on the surface of the PsbO subunit of photosystem II. J Phys Chem B 119:12172–12181

    CAS  PubMed  CrossRef  Google Scholar 

  • Michoux F, Takasaka K, Boehm M, Nixon PJ, Murray JW (2010) Structure of CyanoP at 2.8 Å: implications for the evolution and function of the PsbP subunit of photosystem II. Biochemistry 49:7411–7413

    CAS  PubMed  CrossRef  Google Scholar 

  • Michoux F, Boehm M, Bialek W, Takasaka K, Maghlaoui K, Barber J, Murray JW, Nixon PJ (2014) Crystal structure of CyanoQ from the thermophilic cyanobacterium Thermosynechococcus elongatus and detection in isolated photosystem II complexes. Photosynth Res 122:57–67

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Miyao M, Murata N (1985) The Cl effect on photosynthetic oxygen evolution: interaction of Cl with 18-kDa, 24-kDa and 33-kDa proteins. FEBS Lett 180:303–308

    CAS  CrossRef  Google Scholar 

  • Miyao M, Murata N (1986) Light-dependent inactivation of photosynthetic oxygen evolution during NaCl treatment of photosystem II particles: the role of the 24-kDa protein. Photosynth Res 10:489–496

    CAS  PubMed  CrossRef  Google Scholar 

  • Nagao R, Ishii A, Tada O, Suzuki T, Dohmae N, Okumura A, Iwai M, …, Enami I (2007) Isolation and characterization of oxygen-evolving thylakoid membranes and photosystem II particles from a marine diatom Chaetoceros gracilis. Biochim Biophys Acta 1767:1353–1362

    CAS  PubMed  CrossRef  Google Scholar 

  • Nagao R, Moriguchi A, Tomo T, Niikura A, Nakajima S, Suzuki T, Okumura A, …, Enami I (2010a) Binding and functional properties of five extrinsic proteins in oxygen-evolving photosystem II from a marine centric diatom, Chaetoceros gracilis. J Biol Chem 285: 29191–29199

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nagao R, Tomo T, Noguchi E, Nakajima S, Suzuki T, Okumura A, Kashino Y, …, Enami I (2010b) Purification and characterization of a stable oxygen-evolving photosystem II complex from a marine centric diatom, Chaetoceros gracilis. Biochim Biophys Acta 1797:160–166

    CAS  PubMed  CrossRef  Google Scholar 

  • Nagao R, Suga M, Niikura A, Okumura A, Koua FH, Suzuki T, Tomo T, …, Shen JR (2013) Crystal structure of Psb31, a novel extrinsic protein of photosystem II from a marine centric diatom and implications for its binding and function. Biochemistry 52:6646–6652

    CAS  PubMed  CrossRef  Google Scholar 

  • Nagao R, Tomo T, Noguchi T (2015) Effects of extrinsic proteins on the protein conformation of the oxygen-evolving center in cyanobacterial photosystem II as revealed by Fourier transform infrared spectroscopy. Biochemistry 54:2022–2031

    CAS  PubMed  CrossRef  Google Scholar 

  • Nagao R, Suzuki T, Dohmae N, Shen JR, Tomo T (2017a) Functional role of Lys residues of Psb31 in electrostatic interactions with diatom photosystem II. FEBS Lett 591:3259–3264

    CAS  PubMed  CrossRef  Google Scholar 

  • Nagao R, Suzuki T, Okumura A, Kihira T, Toda A, Dohmae N, Nakazato K, Tomo T (2017b) Electrostatic interaction of positive charges on the surface of Psb31 with photosystem II in the diatom Chaetoceros gracilis. Biochim Biophys Acta 1858:779–785

    CAS  CrossRef  Google Scholar 

  • Nagao R, Ueoka-Nakanishi H, Noguchi T (2017c) D1-Asn-298 in photosystem II is involved in a hydrogen-bond network near the redox-active tyrosine YZ for proton exit during water oxidation. J Biol Chem 292:20046–20057

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Nagao R, Kato K, Suzuki T, Ifuku K, Uchiyama I, Kashino Y, Dohmae N, …, Akita F (2019) Structural basis for energy harvesting and dissipation in a diatom PSII-FCPII. Nature Plants 5:890–901

    CAS  PubMed  CrossRef  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Ann Rev Plant Biol 57:521–565

    CAS  CrossRef  Google Scholar 

  • Nishimura T, Uno C, Ido K, Nagao R, Noguchi T, Sato F, Ifuku K (2014) Identification of the basic amino acid residues on the PsbP protein involved in the electrostatic interaction with photosystem II. Biochim Biophys Acta 1837:1447–1453

    CAS  PubMed  CrossRef  Google Scholar 

  • Nishimura T, Nagao R, Noguchi T, Nield J, Sato F, Ifuku K (2016) The N-terminal sequence of the extrinsic PsbP protein modulates the redox potential of Cyt b559 in photosystem II. Sci Rep 6:21490

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Ogata K, Yuki T, Hatakeyama M, Uchida W, Nakamura S (2013) All-atom molecular dynamics simulation of photosystem II embedded in thylakoid membrane. J Am Chem Soc 135:15670–15673

    CAS  PubMed  CrossRef  Google Scholar 

  • Ohta H, Suzuki T, Ueno M, Okumura A, Yoshihara S, Shen JR, Enami I (2003) Extrinsic proteins of photosystem II: an intermediate member of PsbQ protein family in red algal PSII. Eur J Biochem 270:4156–4163

    CAS  PubMed  CrossRef  Google Scholar 

  • Okumura A, Nagao R, Suzuki T, Yamagoe S, Iwai M, Nakazato K, Enami I (2008) A novel protein in photosystem II of a diatom Chaetoceros gracilis is one of the extrinsic proteins located on lumenal side and directly associates with PSII core components. Biochim Biophys Acta 1777:1545–1551

    CAS  PubMed  CrossRef  Google Scholar 

  • Pagliano C, Saracco G, Barber J (2013) Structural, functional and auxiliary proteins of photosystem II. Photosynth Res 116:167–188

    CAS  PubMed  CrossRef  Google Scholar 

  • Partensky F, Mella-Flores D, Six C, Garczarek L, Czjzek M, Marie D, Kotabová E, …, Prášil O (2018) Comparison of photosynthetic performances of marine picocyanobacteria with different configurations of the oxygen-evolving complex. Photosynth Res 138:57–71

    CAS  PubMed  CrossRef  Google Scholar 

  • Roose JL, Frankel LK, Bricker TM (2010) Documentation of significant electron transport defects on the reducing side of photosystem II upon removal of the PsbP and PsbQ extrinsic proteins. Biochemistry 49:36–41

    CAS  PubMed  CrossRef  Google Scholar 

  • Roose JL, Frankel LK, Bricker TM (2011) Developmental defects in mutants of the PsbP domain protein 5 in Arabidopsis thaliana. PLoS One 6:e28624

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Roose JL, Frankel LK, Bricker TM (2014) The PsbP-domain protein 1 functions in the assembly of lumenal domains in photosystem I. J Biol Chem 289:23776–23785

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Roose JL, Frankel LK, Mummadisetti MP, Bricker TM (2016) The extrinsic proteins of photosystem II: update. Planta 243:889–908

    CAS  PubMed  CrossRef  Google Scholar 

  • Saito K, Rutherford AW, Ishikita H (2015) Energetics of proton release on the first oxidation step in the water-oxidizing enzyme. Nat Commun 6:8488

    CAS  PubMed  CrossRef  Google Scholar 

  • Sakashita N, Watanabe HC, Ikeda T, Ishikita H (2017a) Structurally conserved channels in cyanobacterial and plant photosystem II. Photosynth Res 133:75–85

    CAS  PubMed  CrossRef  Google Scholar 

  • Sakashita N, Watanabe HC, Ikeda T, Saito K, Ishikita H (2017b) Origins of water molecules in the photosystem II crystal tructure. Biochemistry 56:3049–3057

    CAS  PubMed  CrossRef  Google Scholar 

  • Sato N (2010) Phylogenomic and structural modeling analyses of the PsbP superfamily reveal multiple small segment additions in the evolution of photosystem II-associated PsbP protein in green plants. Mol Phylogenet Evol 56:176–186

    CAS  PubMed  CrossRef  Google Scholar 

  • Shen JR (2015) The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Ann Rev Plant Biol 66:23–48

    CAS  CrossRef  Google Scholar 

  • Shen JR, Inoue Y (1993) Binding and functional properties of two new extrinsic components, cytochrome c-550 and a 12-kDa protein, in cyanobacterial photosystem II. Biochemistry 32:1825–1832

    CAS  PubMed  CrossRef  Google Scholar 

  • Shen JR, Ikeuch M, Inoue Y (1992) Stoichiometric association of extrinsic cytochrome c-550 and 12 kDa protein with a highly purified oxygen-evolving photosystem II core complex from Synechococcus vulcanus. FEBS Lett 301:145–149

    Google Scholar 

  • Shen JR, Burnap RL, Inoue Y (1995) An independent role of cytochrome c-550 in cyanobacterial photosystem II as revealed by double-deletion mutagenesis of the psbO and psbV genes in Synechocystis sp. PCC 6803. Biochemistry 34:12661–12668

    CAS  PubMed  CrossRef  Google Scholar 

  • Shutova T, Klimov VV, Andersson B, Samuelsson G (2007) A cluster of carboxylic groups in PsbO protein is involved in proton transfer from the water oxidizing complex of photosystem II. Biochim Biophys Acta 1767:434–440

    CAS  PubMed  CrossRef  Google Scholar 

  • Su X, Ma J, Wei X, Cao P, Zhu D, Chang W, Liu Z, …, Li M (2017) Structure and assembly mechanism of plant C2S2M2 -type PSII-LHCII supercomplex. Science 357:815–820

    CAS  PubMed  CrossRef  Google Scholar 

  • Suga M, Akita F, Hirata K, Ueno G, Murakami H, Nakajima Y, Shimizu T, …, Shen JR (2015) Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517:99–103

    CAS  PubMed  CrossRef  Google Scholar 

  • Suga M, Akita F, Sugahara M, Kubo M, Nakajima Y, Nakane T, Yamashita K, …, Shen JR (2017) Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL. Nature 543:131–135

    CAS  PubMed  CrossRef  Google Scholar 

  • Suga M, Akita F, Yamashita K, Nakajima Y, Ueno G, Li H, Yamane T, …, Shen J-R (2019) An open-cubane oxyl/oxo mechanism for O=O bond formation in PSII revealed by XFEL. Science 366:334–338

    CAS  PubMed  CrossRef  Google Scholar 

  • Summerfield TC, Shand JA, Bentley FK, Eaton-Rye JJ (2005) PsbQ (Sll1638) in Synechocystis sp. PCC 6803 is required for photosystem II activity in specific mutants and in nutrient-limiting conditions. Biochemistry 44:805–815

    CAS  PubMed  CrossRef  Google Scholar 

  • Suzuki T, Ohta H, Enami I (2005) Cross-reconstitution of the extrinsic proteins and photosystem II complexes from Chlamydomonas reinhardtii and Spinacia oleracea. Photosynth Res 84:239–244

    CAS  PubMed  CrossRef  Google Scholar 

  • Takagi D, Ifuku K, Nishimura T, Miyake C (2019) Antimycin A inhibits cytochrome b559-mediated cyclic electron flow within photosystem II. Photosynth Res 139:487–498

    CAS  PubMed  CrossRef  Google Scholar 

  • Takaoka T, Sakashita N, Saito K, Ishikita H (2016) pKa of a proton-conducting water chain in photosystem II. J Phys Chem Lett 7:1925–1932

    CAS  PubMed  CrossRef  Google Scholar 

  • Thornton LE, Ohkawa H, Roose JL, Kashino Y, Keren N, Pakrasi HB (2004) Homologs of plant PsbP and PsbQ proteins are necessary for regulation of photosystem II activity in the cyanobacterium Synechocystis 6803. Plant Cell 16:2164–2175

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Tomita M, Ifuku K, Sato F, Noguchi T (2009) FTIR evidence that the PsbP extrinsic protein induces protein conformational changes around the oxygen-evolving Mn cluster in photosystem II. Biochemistry 48:6318–6325

    CAS  PubMed  CrossRef  Google Scholar 

  • Ueda M, Kuniyoshi T, Yamamoto H, Sugimoto K, Ishizaki K, Kohchi T, Nishimura Y, Shikanai T (2012) Composition and physiological function of the chloroplast NADH dehydrogenase-like complex in Marchantia polymorpha. Plant J 72:683–693

    CAS  PubMed  CrossRef  Google Scholar 

  • Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473:55–60

    CAS  PubMed  Google Scholar 

  • Uno C, Nagao R, Suzuki H, Tomo T, Noguchi T (2013) Structural coupling of extrinsic proteins with the oxygen-evolving center in red algal photosystem II as revealed by light-induced FTIR difference spectroscopy. Biochemistry 52:5705–5707

    CAS  PubMed  CrossRef  Google Scholar 

  • Vassiliev S, Zaraiskaya T, Bruce D (2013) Molecular dynamics simulations reveal highly permeable oxygen exit channels shared with water uptake channels in photosystem II. Biochim Biophys Acta 1827:1148–1155

    CAS  PubMed  CrossRef  Google Scholar 

  • Vinyard DJ, Ananyev GM, Dismukes GC (2013) Photosystem II: the reaction center of oxygenic photosynthesis. Annu Rev Biochem 82:77–606

    CrossRef  CAS  Google Scholar 

  • Wei X, Su X, Cao P, Liu X, Chang W, Li M, Zhang X, Liu Z (2016) Structure of spinach photosystem II–LHCII supercomplex at 3.2 Å resolution. Nature 534:69–74

    CAS  PubMed  CrossRef  Google Scholar 

  • Yabuta S, Ifuku K, Takabayashi A, Ishihara S, Ido K, Ishikawa N, Endo T, Sato F (2010) Three PsbQ-like proteins are required for the function of the chloroplast NAD(P)H dehydrogenase complex in Arabidopsis. Plant Cell Physiol 51:866–876

    CAS  PubMed  CrossRef  Google Scholar 

  • Yamada M, Nagao R, Iwai M, Arai Y, Makita A, Ohta H, Tomo T (2018) The PsbQ′ protein affects the redox potential of the QA in photosystem II. Photosynthetica 56:185–191

    CAS  CrossRef  Google Scholar 

  • Yi X, Hargett SR, Frankel LK, Bricker TM (2006) The PsbQ protein is required in Arabidopsis for photosystem II assembly/stability and photoautotrophy under low light conditions. J Biol Chem 281:26260–26267

    CAS  PubMed  CrossRef  Google Scholar 

  • Yi X, Hargett SR, Liu H, Frankel LK, Bricker TM (2007) The PsbP protein is required for photosystem II complex assembly/stability and photoautotrophy in Arabidopsis thaliana. J Biol Chem 282:24833–24841

    CAS  PubMed  CrossRef  Google Scholar 

  • Yi X, Hargett SR, Frankel LK, Bricker TM (2009) The PsbP protein, but not the PsbQ protein, is required for normal thylakoid architecture in Arabidopsis thaliana. FEBS Lett 583:2142–2147

    CAS  PubMed  CrossRef  Google Scholar 

  • Zienkiewicz M, Krupnik T, Drożak A, Wasilewska W, Golke A, Romanowska E (2018) Deletion of psbQ′ gene in Cyanidioschyzon merolae reveals the function of extrinsic PsbQ′ in PSII. Plant Mol Biol 96:135–149

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Ifuku .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Ifuku, K., Nagao, R. (2021). Evolution and Function of the Extrinsic Subunits of Photosystem II. In: Shen, JR., Satoh, K., Allakhverdiev, S.I. (eds) Photosynthesis: Molecular Approaches to Solar Energy Conversion. Advances in Photosynthesis and Respiration, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-030-67407-6_16

Download citation