Skip to main content

Cyborgization of Modern Social-Economic Systems

Accounting for Changes in Metabolic Identity

  • 286 Accesses

Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

In Part 1 of this paper, the metabolic nature of social-economic systems is explored. A general understanding relating the various constituent components of social-economic systems in a relational network is presented and used to posit that social-economic systems are metabolic-repair (M, R) systems of the type explored in relational biology. It is argued that, through modernization and globalization, social-economic systems are losing certain functional entailment relations and their ability to control replication. It is further argued that modern social-economic systems are losing control over their identity. In Part 2, the implications of those realizations are explored in terms of effective accounting methodology and a practical set of methods capable of harnessing the deep complexity of social-economic systems. In terms of methods, a practical set of metrics defined through the lenses of a macroscope, a mesoscope, and a microscope is presented. Intended to be used simultaneously, the various descriptive domains suggested by our three scopes may be useful for decision-makers who wish to make responsible decisions concerning the control of system identity change or to combat processes of societal cyborgization.

Keywords

  • Metabolism
  • Social-economic system
  • Relational biology
  • Thermodynamics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-67318-5_9
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-67318-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Use of available energy forms that can be converted into useful work according to the characteristics of the user and the environment within which the conversion takes place [3].

  2. 2.

    “Necrophilia in the characterological sense can be described as the passionate attraction to all that is dead, decayed, putrid, sickly; it is the passion to transform that which is alive into something unalive; to destroy for the sake of destruction; the exclusive interest in all that is purely mechanical. It is the passionto tear apart living structures’” [15].

  3. 3.

    Since our mappings are directed, we refer here to a complete directed graph, meaning that every pair of vertices (contextually, societal sectors) is connected by a pair of unique edges (contextually, functional entailments)—one in each direction.

  4. 4.

    “Replication” not in the molecular biology sense, rather in the relational biology sense described at the head of Sect. 1.5.

References

  1. Louie, A.H.: More Than Life Itself: A Synthetic Continuation in Relational Biology. Ontos Verlag (2009)

    Google Scholar 

  2. Lotka, A.J.: Elements of Physical Biology. Williams & Wilkins Company (1925)

    Google Scholar 

  3. Gaudreau, K., Fraser, R.A., Murphy, S.: The tenuous use of exergy as a measure of resource value or waste impact. Sustainability 1, 1444–1463 (2009). https://doi.org/10.3390/su1041444

    CrossRef  Google Scholar 

  4. Georgescu-Roegen, N.: The Entropy Law and the Economic Process. Harvard University Press, Cambridge, MA (1971)

    CrossRef  Google Scholar 

  5. Mayumi, K.T.: Sustainable Energy and Economics in an Aging Population: Lessons from Japan. Springer (2020)

    Google Scholar 

  6. Giampietro, M.: Multi-scale Integrated Analysis of Agroecosystems. CRC Press LLC, New York (2004)

    Google Scholar 

  7. Rashevsky, N.: Mathematical biophysics. Nature 135, 528–530 (1935). https://doi.org/10.1038/135528a0

  8. Rashevsky, N.: Organismic sets: outline of a general theory of biological and social organisms. Bull. Math. Biophys. 29, 139–152 (1967). https://doi.org/10.1007/BF02476967

    CrossRef  MATH  Google Scholar 

  9. Rosen, R.: Life Itself: A Comprehensive Inquiry Into the Nature, Origin, and Fabrication of Life. Columbia University Press, New York (2005)

    Google Scholar 

  10. Rosen, R.: Essays on Life Itself. Columbia University Press, New York (2000)

    Google Scholar 

  11. Louie, A.H.: The Reflection of Life: Functional Entailment and Imminence in Relational Biology. Springer, New York, NY (2013). https://doi.org/10.1007/978-14614-6928-5

  12. Louie, A.H.: Intangible Life: Functorial Connections in Relational Biology. Springer International, Cham, Switzerland (2017). https://doi.org/10.1007/978-3-319-65409-6

  13. Giampietro, M., Renner, A.: The Generation of Meaning and Preservation of Identity in Complex Adaptive Systems: The LIPHE4 Criteria. In: Braha, D. (ed.) Unifying Themes in Complex Systems X. Springer, Cham, Switzerland (2021)

    Google Scholar 

  14. Chase, M.: Teleology and final causation in Aristotle and in contemporary science. Dialogue Can. Philos. Assoc. 50, 511–536 (2011). https://doi.org/10.1017/S0012217311000527

    CrossRef  Google Scholar 

  15. Fromm, E.: The Anatomy of Human Destructiveness. Holt, Rinehart and Winston, New York (1973)

    Google Scholar 

  16. Shove, E., Pantzar, M., Watson, M.: The Dynamics of Social Practice: Everyday Life and How It Changes. SAGE Publications Ltd., London (2012)

    CrossRef  Google Scholar 

  17. Patching, D.: Practical Soft Systems Analysis. Pearson Education Limited, Essex (1990)

    Google Scholar 

  18. Ulanowicz, R.E.: Growth and Development: Ecosystems Phenomenology. Springer, New York (1986)

    CrossRef  Google Scholar 

  19. Rosen, R.: A relational theory of biological systems. Bull. Math. Biophys. 20, 245–260 (1958). https://doi.org/10.1007/BF02478302

    MathSciNet  CrossRef  Google Scholar 

  20. Rosen, R.: A relational theory of biological systems II. Bull. Math. Biophys. 21, 109–128 (1959). https://doi.org/10.1007/BF02476354

    MathSciNet  CrossRef  Google Scholar 

  21. Giampietro, M., Pastore, G.: Biophysical roots of ‘enjoyment of life’ according to Georgescu-Roegen’s bioeconomic paradigm. In: Mayumi, K., Gowdy, J. (eds.) Bioeconomics and Sustainability: Essays in Honor of Nicholas Georgescu-Roegen, p. 438. Edward Elgar Publishing (1999)

    Google Scholar 

  22. Swyngedouw, E.: Circulations and metabolisms: (hybrid) natures and (cyborg) cities. Sci. Cult. (Lond) 15, 105–121 (2006). https://doi.org/10.1080/09505430600707970

    CrossRef  Google Scholar 

  23. Turkle, S.: Alone Together: Why We Expect More from Technology and Less from Each Other. Basic Books, New York, NY, USA (2012)

    Google Scholar 

  24. Noble, D.: A theory of biological relativity: no privileged level of causation. Interface Focus 2, 55–64 (2012). https://doi.org/10.1098/rsfs.2011.0067

    CrossRef  Google Scholar 

  25. Noble, R., Tasaki, K., Noble, P.J., Noble, D.: Biological relativity requires circular causality but not symmetry of causation: so, where, what and when are the boundaries? Front. Physiol. 10, 1–12 (2019). https://doi.org/10.3389/fphys.2019.00827

    CrossRef  Google Scholar 

  26. Giampietro, M., Mayumi, K., Sorman, A.H.: The Metabolic Pattern of Societies: Where Economists Fall Short. Routledge, London (2012)

    Google Scholar 

  27. Giampietro, M., Aria, M., Cabello, V., Cadillo-Benalcazar, J.J., D’Ambrosio, A., de La Fuente, A., Di Felice, L., Iorio, C., Kovacic, Z., Krol, M.S., Madrid López, C., Matthews, K., Miller, D., Musicki Savic, A., Pandolfo, G., Peñate, B., Renner, A., Ripa, M., Ripoll Bosch, R., Serrano-Tovar, T., Siciliano, R., Staiano, M., Velasco, R.: Report on Nexus Security Using Quantitative Story-Telling. http://magic-nexus.eu/sites/default/files/files_documents_repository/magic-ga689669-d4.1-revision.pdf

  28. Velasco-Fernández, R., Chen, L., Pérez-Sánchez, L., Giampietro, M.: Multi-scale integrated comparison of the metabolic pattern of EU28 and China in time. EUFORIE Project. Deliverable 4.4. ICTA, Autonomous University of Barcelona. ICTA, UAB (2018). http://www.euforie-h2020.eu

  29. Pérez-Sánchez, L., Giampietro, M., Velasco-Fernández, R., Ripa, M.: Characterizing the metabolic pattern of urban systems using MuSIASEM: the case of Barcelona. Energy Policy. 124, 13–22 (2019). https://doi.org/10.1016/J.ENPOL.2018.09.028

    CrossRef  Google Scholar 

  30. Giampietro, M., Saltelli, A.: Footprints to nowhere. Ecol. Indic. 46, 610–621 (2014). https://doi.org/10.1016/j.ecolind.2014.01.030

    CrossRef  Google Scholar 

  31. Cadillo-Benalcazar, J.J., Renner, A., Giampietro, M.: An accounting framework for the biophysical profiling of the European agricultural system. In: ALTER-Net and EKLIPSE (eds.) The EU Biodiversity Strategy Beyond 2020: Research Insights and Needs for Biodiversity and Ecosystem Services in Europe. Ghent, Belgium (2019)

    Google Scholar 

  32. Renner, A., Cadillo-Benalcazar, J.J., Benini, L., Giampietro, M.: Environmental pressure of the European agricultural system: Anticipating the biophysical consequences of internalization. Ecosyst. Serv. 46 (2020). https://doi.org/10.1016/j.ecoser.2020.101195

  33. Cabello, V., Renner, A., Giampietro, M.: Relational analysis of the resource nexus in arid land crop production. Adv. Water Resour. 130, 258–269 (2019). https://doi.org/10.1016/j.advwatres.2019.06.014

    CrossRef  Google Scholar 

  34. Di Felice, L.J., Ripa, M., Giampietro, M.: An alternative to market-oriented energy models: nexus patterns across hierarchical levels. Energy Policy 126, 431–443 (2019). https://doi.org/10.1016/j.enpol.2018.11.002

    CrossRef  Google Scholar 

Download references

Acknowledgements

A. Renner acknowledges financial support from the Spanish Ministry of Education, Culture and Sport, through the “formación de profesorado universitario” scholarship program (FPU15/03376). A. Renner and M. Giampietro acknowledge financial support by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 689669 (MAGIC), the Catalonian Government (AGAUR) under Grant Agreement 2017-SGR-230, and the Spanish Ministry of Science, Innovation and Universities, through the “María de Maeztu” program for Units of Excellence (CEX2019-000940-M). This work only reflects the view of the authors; the funding agencies are not responsible for any use that may be made of the information it contains.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ansel Renner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Renner, A., Louie, A.H., Giampietro, M. (2021). Cyborgization of Modern Social-Economic Systems. In: , et al. Unifying Themes in Complex Systems X. ICCS 2020. Springer Proceedings in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-67318-5_9

Download citation