Skip to main content

Pathological Water Science – Four Examples and What They Have in Common

  • Chapter
  • First Online:
Water in Biomechanical and Related Systems

Part of the book series: Biologically-Inspired Systems ((BISY,volume 17))

Abstract

Pathological science occurs when well-intentioned scientists spend extended time and resources studying a phenomena that isn’t real. Researchers who get caught up in pathological science are usually following the scientific method and performing careful experiments, but they get tricked by nature. The study of water has had several protracted episodes of pathological science, a few of which are still ongoing. We discuss four areas of pathological water science – polywater, the Mpemba effect, Pollack’s “fourth phase” of water, and the effects of static magnetic fields on water. Some common water-specific issues emerge such as the contamination and confounding of experiments with dissolved solutes and nanobubbles. General issues also emerge such as imprecision in defining what is being studied, bias towards confirmation rather than falsification, and poor standards for reproducibility. We hope this work helps researchers avoid wasting valuable time and resources pursuing pathological science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aleksandrov, V. D., Barannikov, A. A., & Dobritsa, N. V. (2000). Effect of magnetic field on the supercooling of water drops. Inorganic Materials, 36(9), 895–898.

    Article  CAS  Google Scholar 

  • Ambashta, R. D., & Sillanpää, M. (2010). Water purification using magnetic assistance: A review. Journal of Hazardous Materials, 180(1–3), 38–49.

    Article  CAS  PubMed  Google Scholar 

  • Auerbach, D. (1995). Supercooling and the Mpemba effect: When hot water freezes quicker than cold. American Journal of Physics, 63(10), 882–885.

    Article  Google Scholar 

  • Baker, J. S., & Judd, S. J. (1996). Magnetic amelioration of scale formation. Water Research, 30(2), 247–260.

    Article  CAS  Google Scholar 

  • Ball, P. (1999). H2O: A biography of water. London: Weidenfeld & Nicolson.

    Google Scholar 

  • Ball, P. (2012). Nanobubbles are not a Superficial Matter. ChemPhysChem, 13(8), 2173–2177.

    Article  CAS  PubMed  Google Scholar 

  • Barrett, R. A., & Parsons, S. A. (1998). The influence of magnetic fields on calcium carbonate precipitation. Water Research, 32(3), 609–612.

    Article  CAS  Google Scholar 

  • Bennion, B. C., & Neuton, L. A. (1976). The epidemiology of research on “Anomalous Water”. Journal of the American Society for Information Science, 27(1), 53–56.

    Article  Google Scholar 

  • Biryukov, A. S., Gavrikov, V. F., Nikiforova, L. O., et al. (2005). New physical methods of disinfection of water. Journal of Russian Laser Research, 26(1), 13–25.

    Article  Google Scholar 

  • Boudry, M., & Braeckman, J. (2011). Immunizing strategies and epistemic defense mechanisms. Philosophia, 39(1), 145–161.

    Article  Google Scholar 

  • Brownridge, J. D. (2010). When does hot water freeze faster then cold water? A search for the Mpemba effect. American Journal of Physics, 79(1), 78–84.

    Article  CAS  Google Scholar 

  • Burridge, H. C., & Linden, P. F. (2016). Questioning the Mpemba effect: Hot water does not cool more quickly than cold. Scientific Reports, 6(1), 37665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai, R., Yang, H., He, J., et al. (2009). The effects of magnetic fields on water molecular hydrogen bonds. Journal of Molecular Structure, 938(1–3), 15–19.

    Article  CAS  Google Scholar 

  • Casalini, R., & Roland, C. M. (2011). On the low frequency loss peak in the dielectric spectrum of glycerol. The Journal of Chemical Physics, 135(9), 094502.

    Article  CAS  PubMed  Google Scholar 

  • Chai, B., & Pollack, G. H. (2010). Solute-free interfacial zones in polar liquids. The Journal of Physical Chemistry. B, 114(16), 5371–5375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chai, B.-H., Zheng, J.-M., Zhao, Q., et al. (2008). Spectroscopic studies of solutes in aqueous solution. The Journal of Physical Chemistry. A, 112(11), 2242–2247.

    Article  CAS  PubMed  Google Scholar 

  • Chai, B., Yoo, H., & Pollack, G. H. (2009). Effect of radiant energy on near-surface water. The Journal of Physical Chemistry B, 113(42), 13953–13958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, K.-T., & Weng, C.-I. (2006). The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. Journal of Applied Physics, 100(4), 043917.

    Article  CAS  Google Scholar 

  • Coey, J. M. D., & Cass, S. (2000). Magnetic water treatment. Journal of Magnetism and Magnetic Materials, 209(1), 71–74.

    Article  CAS  Google Scholar 

  • Dibble, W. E., Kaszyk, J., & Tiller, W. A. (2014). Bulk water with exclusion zone water characteristics: Experimental evidence of interaction with a non-physical agent. WATER Journal, 6, 35–44.

    Google Scholar 

  • Eisenberg, D. (1981). A scientific gold rush. Science, 213(4512), 1104–1105.

    Article  CAS  PubMed  Google Scholar 

  • Elton, D. C. (2017). The origin of the Debye relaxation in liquid water and fitting the high frequency excess response. Physical Chemistry Chemical Physics, 19(28), 18739–18749.

    Article  CAS  PubMed  Google Scholar 

  • Elton, D. C., Spencer, P. D., Riches, J. D., et al. (2020). Exclusion zone phenomena in water—A critical review of experimental findings and theories. International Journal of Molecular Sciences, 21(14), 5041.

    Article  CAS  PubMed Central  Google Scholar 

  • Ernst, E. (2002). A systematic review of systematic reviews of homeopathy. British Journal of Clinical Pharmacology, 54(6), 577–582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Florea, D., Musa, S., Huyghe, J. M. R., et al. (2014a). Long-range repulsion of colloids driven by ion exchange and diffusiophoresis. Proceedings of the National Academy of Sciences, 111(18), 6554–6559.

    Article  CAS  Google Scholar 

  • Florea, D. D., Musa, S. S., Huyghe, J. J., et al. (2014b). Long-range repulsion of colloids driven by ion-exchange and diffusiophoresis. Proceedings of the National Academy of Sciences of the United States of America, 111(18), 6554–6559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadomski, A., Ausloos, M., & Casey, T. (2017). Dynamical systems theory in quantitative psychology and cognitive science: A fair discrimination between deterministic and statistical counterparts is required. Nonlinear Dynamics, Psychology, and Life Sciences, 21(2), 129–141.

    PubMed  Google Scholar 

  • Gehr, R., Zhai, Z. A., Finch, J. A., et al. (1995). Reduction of soluble mineral concentrations in CaSO 4 saturated water using a magnetic field. Water Research, 29(3), 933–940.

    Article  CAS  Google Scholar 

  • Ghauri, S. A., & Ansari, M. S. (2006). Increase of water viscosity under the influence of magnetic field. Journal of Applied Physics, 104(6), 066101–066102.

    Article  CAS  Google Scholar 

  • Hasted, J. B. (1971). Water and ‘polywater’. Contemporary Physics, 12(2), 133–152.

    Article  CAS  Google Scholar 

  • Higashitani, K., Kage, A., Katamura, S., et al. (1993). Effects of a magnetic field on the formation of CaCO3 particles. Journal of Colloid and Interface Science, 156(1), 90–95.

    Article  CAS  Google Scholar 

  • Holysz, L., Szcześ, A., & Chibowski, E. (2007). Effects of a static magnetic field on water and electrolyte solutions. Journal of Colloid and Interface Science, 316(2), 996–1002.

    Article  CAS  PubMed  Google Scholar 

  • Horinek, D., Serr, A., Geisler, M., et al. (2008). Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces. Proceedings of the National Academy of Sciences, 105(8), 2842–2847.

    Article  CAS  Google Scholar 

  • Hosoda, H., Mori, H., Sogoshi, N., et al. (2004). Refractive indices of water and aqueous electrolyte solutions under high magnetic fields. The Journal of Physical Chemistry. A, 108 (9), 1461–1464.

    Article  CAS  Google Scholar 

  • Inaba, H., Saitou, T., Tozaki, K.-I., et al. (2004). Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter. Journal of Applied Physics, 96(11), 6127–6132.

    Article  CAS  Google Scholar 

  • Jadhav, A. J., & Barigou, M. (2020). Bulk Nanobubbles or not Nanobubbles: That is the question. Langmuir, 36(7), 1699–1708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansson, H., Bergman, R., & Swenson, J. (2010). Hidden slow dynamics in water. Physical Review Letters, 104(1), 017802.

    Article  PubMed  CAS  Google Scholar 

  • Jeng, M. (2006). The Mpemba effect: When can hot water freeze faster than cold? American Journal of Physics, 74(6), 514–522.

    Article  CAS  Google Scholar 

  • Kahneman, D. (2011). Thinking, fast and slow. Farrar: Straus and Giroux.

    Google Scholar 

  • Katz, J. I. (2008). When hot water freezes before cold. American Journal of Physics, 77(1), 27–29.

    Article  CAS  Google Scholar 

  • Knez, S., & Pohar, C. (2005). The magnetic field influence on the polymorph composition of CaCO3 precipitated from carbonized aqueous solutions. Journal of Colloid and Interface Science, 281(2), 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Langmuir, I., & Hall, R. N. (1989). Pathological science. Physics Today, 42(10), 36–48.

    Article  Google Scholar 

  • Lee, S. H., Jeon, S. I., Kim, Y. S., et al. (2013). Changes in the electrical conductivity, infrared absorption, and surface tension of partially-degassed and magnetically-treated water. Journal of Molecular Liquids, 187, 230–237.

    Article  CAS  Google Scholar 

  • Lippincott, E. R., Stromberg, R. R., Grant, W. H., et al. (1969). Polywater. Science, 164(3887), 1482–1487.

    Article  CAS  PubMed  Google Scholar 

  • Maddox, J., Randi, J., & Stewart, W. W. (1988). “High-dilution” experiments a delusion. Nature, 334(6180), 287–290.

    Article  CAS  PubMed  Google Scholar 

  • Madsen, H. E. L. (1995). Influence of magnetic field on the precipitation of some inorganic salts. Journal of Crystal Growth, 152(1), 94–100.

    Article  Google Scholar 

  • Mahmoud, B., Yosra, M., & Nadia, A. (2016). Effects of magnetic treatment on scaling power of hard waters. Separation and Purification Technology, 171, 88–92.

    Article  CAS  Google Scholar 

  • Michailidi, E. D., Bomis, G., Varoutoglou, A., et al. (2020). Bulk nanobubbles: Production and investigation of their formation/stability mechanism. Journal of Colloid and Interface Science, 564, 371–380.

    Article  CAS  PubMed  Google Scholar 

  • Mpemba, E. B., & Osborne, D. G. (1969). Cool? Physics Education, 4(3), 172–175.

    Article  Google Scholar 

  • Musa, S., Florea, D., van Loon, S., Wyss, H., & Huyghe, J. (2013). Interfacial Water: Unexplained Phenomena. Paper presented at the Poromechanics V: Proceedings of the Fifth Biot. Conference on Poromechanics. Vienna, Austria: American Society of Civil Engineers.

    Google Scholar 

  • Nakagawa, J., Hirota, N., Kitazawa, K., et al. (1999). Magnetic field enhancement of water vaporization. Journal of Applied Physics, 86(5), 2923–2925.

    Article  CAS  Google Scholar 

  • Novella, S. (2013). Evidence Thresholds. Available at: https://sciencebasedmedicine.org/evidence-thresholds/

  • Oehr, K., & LeMay, P. (2014). The case for tetrahedral oxy-subhydride (TOSH) structures in the exclusion zones of anchored polar solvents including water. Entropy, 16(11), 5712–5720.

    Article  CAS  Google Scholar 

  • Otero, L., Rodríguez, A. C., Pérez-Mateos, M., et al. (2016). Effects of magnetic fields on freezing: Application to biological products. Comprehensive Reviews in Food Science and Food Safety, 15(3), 646–667.

    Article  PubMed  Google Scholar 

  • Ozeki, S., & Otsuka, I. (2006). Transient oxygen clathrate-like hydrate and water networks induced by magnetic fields. The Journal of Physical Chemistry. B, 110(41), 20067–20072.

    Article  CAS  PubMed  Google Scholar 

  • Ozeki, S., Wakai, C., & Ono, S. (1991). Is a magnetic effect on water adsorption possible? The Journal of Physical Chemistry, 95(26), 10557–10559.

    Article  CAS  Google Scholar 

  • Pollack, G. H. (2013). The fourth phase of water: Beyond solid, liquid, and vapor. In D. Scott (Ed) Kindle ed. Seattle: Ebner and Sons Publishers.

    Google Scholar 

  • Richert, R., Agapov, A., & Sokolov, A. P. (2011). Appearance of a Debye process at the conductivity relaxation frequency of a viscous liquid. The Journal of Chemical Physics, 134(10), 104508.

    Article  PubMed  CAS  Google Scholar 

  • Rousseau, D. L. (1971). “Polywater” and sweat: Similarities between the infrared spectra. Science, 171(3967), 170–172.

    Article  CAS  PubMed  Google Scholar 

  • Rousseau, D. L., & Porto, S. P. S. (1970). Polywater: Polymer or Artifact? Science, 167(3926), 1715–1719.

    Article  CAS  PubMed  Google Scholar 

  • Schurr, J. M. (2013). Phenomena associated with gel–water interfaces. Analyses and alternatives to the long-range ordered water hypothesis. The Journal of Physical Chemistry. B, 117 (25), 7653–7674.

    Article  CAS  PubMed  Google Scholar 

  • Segarra-Martí, J., Roca-Sanjuán, D., & Merchán, M. (2014). Can the hexagonal ice-like model render the spectroscopic fingerprints of structured water? Feedback from quantum-chemical computations. Entropy, 16(7), 4101–4120.

    Article  CAS  Google Scholar 

  • Shin, P. (2006). Water, everywhere, Caveat Emptor (Buyer Beware)! Available at: http://www.csun.edu/~alchemy/Caveat_Emptor.pdf

  • Silva, I. B., Queiroz Neto, J. C., & Petri, D. F. S. (2015). The effect of magnetic field on ion hydration and sulfate scale formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465, 175–183.

    Article  CAS  Google Scholar 

  • Smothers, K. W. C., Charles, D., Gard, B. T., Strauss, R. H., & Hock, V. F. (2001). Demonstration and evaluation of magnetic descalers. Available at: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA399455. Accessed 22 March.

  • So, E., Stahlberg, R., & Pollack, G. (2012). Exclusion zone as intermediate between ice and water. Southampton: WIT Press.

    Google Scholar 

  • Spencer, P. D. (2018). Examining claims of long-range molecular order in water molecules. Queensland University of Technology.

    Google Scholar 

  • Spencer, P. D., Riches, J. D., & Williams, E. D. (2018). Exclusion zone water is associated with material that exhibits proton diffusion but not birefringent properties. Fluid Phase Equilibria, 466, 103–109.

    Article  CAS  Google Scholar 

  • Szcześ, A., Chibowski, E., Hołysz, L., et al. (2011). Effects of static magnetic field on water at kinetic condition. Chemical Engineering and Processing, 50(1), 124–127.

    Article  CAS  Google Scholar 

  • Tagami, M., Hamai, M., Mogi, I., et al. (1999). Solidification of levitating water in a gradient strong magnetic field. Journal of Crystal Growth, 203(4), 594–598.

    Article  CAS  Google Scholar 

  • Toledo, E. J. L., Ramalho, T. C., & Magriotis, Z. M. (2008). Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. Journal of Molecular Structure, 888(1–3), 409–415.

    Article  CAS  Google Scholar 

  • Wowk, B. (2012). Electric and magnetic fields in cryopreservation. Cryobiology, 64(3), 301–303.

    Article  PubMed  Google Scholar 

  • Yuvan, S., & Bier, M. (this volume). Sense and nonsense about water. In A. Gadomski (Ed.), Water in biomechanical and related systems (Biologically-Inspired System, Vol. 17).

    Google Scholar 

  • Zheng, J.-M., & Pollack, G. H. (2003). Long-range forces extending from polymer-gel surfaces. Physical Review E, 68(3 Pt 1), 031408.

    Article  CAS  Google Scholar 

  • Zheng, J. M., Chin, W. C., Khijniak, E., et al. (2006). Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact. Advances in Colloid and Interface Science, 127(1), 19–27.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Daniel C. Elton contributed this article in his personal capacity. The opinions expressed in this article are the author’s own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government. Peter D. Spencer was partially supported by the Research Training Program (Stipend) funded by Department of Education and Training (Australia). Daniel C. Elton acknowledges his PhD. thesis advisor, Prof. Marivi Fernández-Serra, and Prof. Martin Bier for inspiring this line of inquiry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Spencer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elton, D.C., Spencer, P.D. (2021). Pathological Water Science – Four Examples and What They Have in Common. In: Gadomski, A. (eds) Water in Biomechanical and Related Systems. Biologically-Inspired Systems, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-67227-0_8

Download citation

Publish with us

Policies and ethics