Skip to main content

Pathological Water Science – Four Examples and What They Have in Common

Part of the Biologically-Inspired Systems book series (BISY,volume 17)

Abstract

Pathological science occurs when well-intentioned scientists spend extended time and resources studying a phenomena that isn’t real. Researchers who get caught up in pathological science are usually following the scientific method and performing careful experiments, but they get tricked by nature. The study of water has had several protracted episodes of pathological science, a few of which are still ongoing. We discuss four areas of pathological water science – polywater, the Mpemba effect, Pollack’s “fourth phase” of water, and the effects of static magnetic fields on water. Some common water-specific issues emerge such as the contamination and confounding of experiments with dissolved solutes and nanobubbles. General issues also emerge such as imprecision in defining what is being studied, bias towards confirmation rather than falsification, and poor standards for reproducibility. We hope this work helps researchers avoid wasting valuable time and resources pursuing pathological science.

Keywords

  • Basics of water
  • Pathological water science
  • Polywater
  • “Fourth” phase
  • Static magnetic field effect on water

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-67227-0_8
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-67227-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3

References

  • Aleksandrov, V. D., Barannikov, A. A., & Dobritsa, N. V. (2000). Effect of magnetic field on the supercooling of water drops. Inorganic Materials, 36(9), 895–898.

    CAS  CrossRef  Google Scholar 

  • Ambashta, R. D., & Sillanpää, M. (2010). Water purification using magnetic assistance: A review. Journal of Hazardous Materials, 180(1–3), 38–49.

    CAS  PubMed  CrossRef  Google Scholar 

  • Auerbach, D. (1995). Supercooling and the Mpemba effect: When hot water freezes quicker than cold. American Journal of Physics, 63(10), 882–885.

    CrossRef  Google Scholar 

  • Baker, J. S., & Judd, S. J. (1996). Magnetic amelioration of scale formation. Water Research, 30(2), 247–260.

    CAS  CrossRef  Google Scholar 

  • Ball, P. (1999). H2O: A biography of water. London: Weidenfeld & Nicolson.

    Google Scholar 

  • Ball, P. (2012). Nanobubbles are not a Superficial Matter. ChemPhysChem, 13(8), 2173–2177.

    CAS  PubMed  CrossRef  Google Scholar 

  • Barrett, R. A., & Parsons, S. A. (1998). The influence of magnetic fields on calcium carbonate precipitation. Water Research, 32(3), 609–612.

    CAS  CrossRef  Google Scholar 

  • Bennion, B. C., & Neuton, L. A. (1976). The epidemiology of research on “Anomalous Water”. Journal of the American Society for Information Science, 27(1), 53–56.

    CrossRef  Google Scholar 

  • Biryukov, A. S., Gavrikov, V. F., Nikiforova, L. O., et al. (2005). New physical methods of disinfection of water. Journal of Russian Laser Research, 26(1), 13–25.

    CrossRef  Google Scholar 

  • Boudry, M., & Braeckman, J. (2011). Immunizing strategies and epistemic defense mechanisms. Philosophia, 39(1), 145–161.

    CrossRef  Google Scholar 

  • Brownridge, J. D. (2010). When does hot water freeze faster then cold water? A search for the Mpemba effect. American Journal of Physics, 79(1), 78–84.

    CrossRef  CAS  Google Scholar 

  • Burridge, H. C., & Linden, P. F. (2016). Questioning the Mpemba effect: Hot water does not cool more quickly than cold. Scientific Reports, 6(1), 37665.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Cai, R., Yang, H., He, J., et al. (2009). The effects of magnetic fields on water molecular hydrogen bonds. Journal of Molecular Structure, 938(1–3), 15–19.

    CAS  CrossRef  Google Scholar 

  • Casalini, R., & Roland, C. M. (2011). On the low frequency loss peak in the dielectric spectrum of glycerol. The Journal of Chemical Physics, 135(9), 094502.

    CAS  PubMed  CrossRef  Google Scholar 

  • Chai, B., & Pollack, G. H. (2010). Solute-free interfacial zones in polar liquids. The Journal of Physical Chemistry. B, 114(16), 5371–5375.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chai, B.-H., Zheng, J.-M., Zhao, Q., et al. (2008). Spectroscopic studies of solutes in aqueous solution. The Journal of Physical Chemistry. A, 112(11), 2242–2247.

    CAS  PubMed  CrossRef  Google Scholar 

  • Chai, B., Yoo, H., & Pollack, G. H. (2009). Effect of radiant energy on near-surface water. The Journal of Physical Chemistry B, 113(42), 13953–13958.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Chang, K.-T., & Weng, C.-I. (2006). The effect of an external magnetic field on the structure of liquid water using molecular dynamics simulation. Journal of Applied Physics, 100(4), 043917.

    CrossRef  CAS  Google Scholar 

  • Coey, J. M. D., & Cass, S. (2000). Magnetic water treatment. Journal of Magnetism and Magnetic Materials, 209(1), 71–74.

    CAS  CrossRef  Google Scholar 

  • Dibble, W. E., Kaszyk, J., & Tiller, W. A. (2014). Bulk water with exclusion zone water characteristics: Experimental evidence of interaction with a non-physical agent. WATER Journal, 6, 35–44.

    Google Scholar 

  • Eisenberg, D. (1981). A scientific gold rush. Science, 213(4512), 1104–1105.

    CAS  PubMed  CrossRef  Google Scholar 

  • Elton, D. C. (2017). The origin of the Debye relaxation in liquid water and fitting the high frequency excess response. Physical Chemistry Chemical Physics, 19(28), 18739–18749.

    CAS  PubMed  CrossRef  Google Scholar 

  • Elton, D. C., Spencer, P. D., Riches, J. D., et al. (2020). Exclusion zone phenomena in water—A critical review of experimental findings and theories. International Journal of Molecular Sciences, 21(14), 5041.

    CAS  PubMed Central  CrossRef  Google Scholar 

  • Ernst, E. (2002). A systematic review of systematic reviews of homeopathy. British Journal of Clinical Pharmacology, 54(6), 577–582.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Florea, D., Musa, S., Huyghe, J. M. R., et al. (2014a). Long-range repulsion of colloids driven by ion exchange and diffusiophoresis. Proceedings of the National Academy of Sciences, 111(18), 6554–6559.

    CAS  CrossRef  Google Scholar 

  • Florea, D. D., Musa, S. S., Huyghe, J. J., et al. (2014b). Long-range repulsion of colloids driven by ion-exchange and diffusiophoresis. Proceedings of the National Academy of Sciences of the United States of America, 111(18), 6554–6559.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Gadomski, A., Ausloos, M., & Casey, T. (2017). Dynamical systems theory in quantitative psychology and cognitive science: A fair discrimination between deterministic and statistical counterparts is required. Nonlinear Dynamics, Psychology, and Life Sciences, 21(2), 129–141.

    PubMed  Google Scholar 

  • Gehr, R., Zhai, Z. A., Finch, J. A., et al. (1995). Reduction of soluble mineral concentrations in CaSO 4 saturated water using a magnetic field. Water Research, 29(3), 933–940.

    CAS  CrossRef  Google Scholar 

  • Ghauri, S. A., & Ansari, M. S. (2006). Increase of water viscosity under the influence of magnetic field. Journal of Applied Physics, 104(6), 066101–066102.

    CrossRef  CAS  Google Scholar 

  • Hasted, J. B. (1971). Water and ‘polywater’. Contemporary Physics, 12(2), 133–152.

    CAS  CrossRef  Google Scholar 

  • Higashitani, K., Kage, A., Katamura, S., et al. (1993). Effects of a magnetic field on the formation of CaCO3 particles. Journal of Colloid and Interface Science, 156(1), 90–95.

    CAS  CrossRef  Google Scholar 

  • Holysz, L., Szcześ, A., & Chibowski, E. (2007). Effects of a static magnetic field on water and electrolyte solutions. Journal of Colloid and Interface Science, 316(2), 996–1002.

    CAS  PubMed  CrossRef  Google Scholar 

  • Horinek, D., Serr, A., Geisler, M., et al. (2008). Peptide adsorption on a hydrophobic surface results from an interplay of solvation, surface, and intrapeptide forces. Proceedings of the National Academy of Sciences, 105(8), 2842–2847.

    CAS  CrossRef  Google Scholar 

  • Hosoda, H., Mori, H., Sogoshi, N., et al. (2004). Refractive indices of water and aqueous electrolyte solutions under high magnetic fields. The Journal of Physical Chemistry. A, 108 (9), 1461–1464.

    CAS  CrossRef  Google Scholar 

  • Inaba, H., Saitou, T., Tozaki, K.-I., et al. (2004). Effect of the magnetic field on the melting transition of H2O and D2O measured by a high resolution and supersensitive differential scanning calorimeter. Journal of Applied Physics, 96(11), 6127–6132.

    CAS  CrossRef  Google Scholar 

  • Jadhav, A. J., & Barigou, M. (2020). Bulk Nanobubbles or not Nanobubbles: That is the question. Langmuir, 36(7), 1699–1708.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Jansson, H., Bergman, R., & Swenson, J. (2010). Hidden slow dynamics in water. Physical Review Letters, 104(1), 017802.

    PubMed  CrossRef  CAS  Google Scholar 

  • Jeng, M. (2006). The Mpemba effect: When can hot water freeze faster than cold? American Journal of Physics, 74(6), 514–522.

    CAS  CrossRef  Google Scholar 

  • Kahneman, D. (2011). Thinking, fast and slow. Farrar: Straus and Giroux.

    Google Scholar 

  • Katz, J. I. (2008). When hot water freezes before cold. American Journal of Physics, 77(1), 27–29.

    CrossRef  CAS  Google Scholar 

  • Knez, S., & Pohar, C. (2005). The magnetic field influence on the polymorph composition of CaCO3 precipitated from carbonized aqueous solutions. Journal of Colloid and Interface Science, 281(2), 377–388.

    CAS  PubMed  CrossRef  Google Scholar 

  • Langmuir, I., & Hall, R. N. (1989). Pathological science. Physics Today, 42(10), 36–48.

    CrossRef  Google Scholar 

  • Lee, S. H., Jeon, S. I., Kim, Y. S., et al. (2013). Changes in the electrical conductivity, infrared absorption, and surface tension of partially-degassed and magnetically-treated water. Journal of Molecular Liquids, 187, 230–237.

    CAS  CrossRef  Google Scholar 

  • Lippincott, E. R., Stromberg, R. R., Grant, W. H., et al. (1969). Polywater. Science, 164(3887), 1482–1487.

    CAS  PubMed  CrossRef  Google Scholar 

  • Maddox, J., Randi, J., & Stewart, W. W. (1988). “High-dilution” experiments a delusion. Nature, 334(6180), 287–290.

    CAS  PubMed  CrossRef  Google Scholar 

  • Madsen, H. E. L. (1995). Influence of magnetic field on the precipitation of some inorganic salts. Journal of Crystal Growth, 152(1), 94–100.

    CrossRef  Google Scholar 

  • Mahmoud, B., Yosra, M., & Nadia, A. (2016). Effects of magnetic treatment on scaling power of hard waters. Separation and Purification Technology, 171, 88–92.

    CAS  CrossRef  Google Scholar 

  • Michailidi, E. D., Bomis, G., Varoutoglou, A., et al. (2020). Bulk nanobubbles: Production and investigation of their formation/stability mechanism. Journal of Colloid and Interface Science, 564, 371–380.

    CAS  PubMed  CrossRef  Google Scholar 

  • Mpemba, E. B., & Osborne, D. G. (1969). Cool? Physics Education, 4(3), 172–175.

    CrossRef  Google Scholar 

  • Musa, S., Florea, D., van Loon, S., Wyss, H., & Huyghe, J. (2013). Interfacial Water: Unexplained Phenomena. Paper presented at the Poromechanics V: Proceedings of the Fifth Biot. Conference on Poromechanics. Vienna, Austria: American Society of Civil Engineers.

    Google Scholar 

  • Nakagawa, J., Hirota, N., Kitazawa, K., et al. (1999). Magnetic field enhancement of water vaporization. Journal of Applied Physics, 86(5), 2923–2925.

    CAS  CrossRef  Google Scholar 

  • Novella, S. (2013). Evidence Thresholds. Available at: https://sciencebasedmedicine.org/evidence-thresholds/

  • Oehr, K., & LeMay, P. (2014). The case for tetrahedral oxy-subhydride (TOSH) structures in the exclusion zones of anchored polar solvents including water. Entropy, 16(11), 5712–5720.

    CrossRef  CAS  Google Scholar 

  • Otero, L., Rodríguez, A. C., Pérez-Mateos, M., et al. (2016). Effects of magnetic fields on freezing: Application to biological products. Comprehensive Reviews in Food Science and Food Safety, 15(3), 646–667.

    PubMed  CrossRef  Google Scholar 

  • Ozeki, S., & Otsuka, I. (2006). Transient oxygen clathrate-like hydrate and water networks induced by magnetic fields. The Journal of Physical Chemistry. B, 110(41), 20067–20072.

    CAS  PubMed  CrossRef  Google Scholar 

  • Ozeki, S., Wakai, C., & Ono, S. (1991). Is a magnetic effect on water adsorption possible? The Journal of Physical Chemistry, 95(26), 10557–10559.

    CAS  CrossRef  Google Scholar 

  • Pollack, G. H. (2013). The fourth phase of water: Beyond solid, liquid, and vapor. In D. Scott (Ed) Kindle ed. Seattle: Ebner and Sons Publishers.

    Google Scholar 

  • Richert, R., Agapov, A., & Sokolov, A. P. (2011). Appearance of a Debye process at the conductivity relaxation frequency of a viscous liquid. The Journal of Chemical Physics, 134(10), 104508.

    PubMed  CrossRef  CAS  Google Scholar 

  • Rousseau, D. L. (1971). “Polywater” and sweat: Similarities between the infrared spectra. Science, 171(3967), 170–172.

    CAS  PubMed  CrossRef  Google Scholar 

  • Rousseau, D. L., & Porto, S. P. S. (1970). Polywater: Polymer or Artifact? Science, 167(3926), 1715–1719.

    CAS  PubMed  CrossRef  Google Scholar 

  • Schurr, J. M. (2013). Phenomena associated with gel–water interfaces. Analyses and alternatives to the long-range ordered water hypothesis. The Journal of Physical Chemistry. B, 117 (25), 7653–7674.

    CAS  PubMed  CrossRef  Google Scholar 

  • Segarra-Martí, J., Roca-Sanjuán, D., & Merchán, M. (2014). Can the hexagonal ice-like model render the spectroscopic fingerprints of structured water? Feedback from quantum-chemical computations. Entropy, 16(7), 4101–4120.

    CrossRef  CAS  Google Scholar 

  • Shin, P. (2006). Water, everywhere, Caveat Emptor (Buyer Beware)! Available at: http://www.csun.edu/~alchemy/Caveat_Emptor.pdf

  • Silva, I. B., Queiroz Neto, J. C., & Petri, D. F. S. (2015). The effect of magnetic field on ion hydration and sulfate scale formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 465, 175–183.

    CAS  CrossRef  Google Scholar 

  • Smothers, K. W. C., Charles, D., Gard, B. T., Strauss, R. H., & Hock, V. F. (2001). Demonstration and evaluation of magnetic descalers. Available at: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA399455. Accessed 22 March.

  • So, E., Stahlberg, R., & Pollack, G. (2012). Exclusion zone as intermediate between ice and water. Southampton: WIT Press.

    Google Scholar 

  • Spencer, P. D. (2018). Examining claims of long-range molecular order in water molecules. Queensland University of Technology.

    Google Scholar 

  • Spencer, P. D., Riches, J. D., & Williams, E. D. (2018). Exclusion zone water is associated with material that exhibits proton diffusion but not birefringent properties. Fluid Phase Equilibria, 466, 103–109.

    CAS  CrossRef  Google Scholar 

  • Szcześ, A., Chibowski, E., Hołysz, L., et al. (2011). Effects of static magnetic field on water at kinetic condition. Chemical Engineering and Processing, 50(1), 124–127.

    CrossRef  CAS  Google Scholar 

  • Tagami, M., Hamai, M., Mogi, I., et al. (1999). Solidification of levitating water in a gradient strong magnetic field. Journal of Crystal Growth, 203(4), 594–598.

    CAS  CrossRef  Google Scholar 

  • Toledo, E. J. L., Ramalho, T. C., & Magriotis, Z. M. (2008). Influence of magnetic field on physical–chemical properties of the liquid water: Insights from experimental and theoretical models. Journal of Molecular Structure, 888(1–3), 409–415.

    CAS  CrossRef  Google Scholar 

  • Wowk, B. (2012). Electric and magnetic fields in cryopreservation. Cryobiology, 64(3), 301–303.

    PubMed  CrossRef  Google Scholar 

  • Yuvan, S., & Bier, M. (this volume). Sense and nonsense about water. In A. Gadomski (Ed.), Water in biomechanical and related systems (Biologically-Inspired System, Vol. 17).

    Google Scholar 

  • Zheng, J.-M., & Pollack, G. H. (2003). Long-range forces extending from polymer-gel surfaces. Physical Review E, 68(3 Pt 1), 031408.

    CrossRef  CAS  Google Scholar 

  • Zheng, J. M., Chin, W. C., Khijniak, E., et al. (2006). Surfaces and interfacial water: Evidence that hydrophilic surfaces have long-range impact. Advances in Colloid and Interface Science, 127(1), 19–27.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Acknowledgements

Daniel C. Elton contributed this article in his personal capacity. The opinions expressed in this article are the author’s own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government. Peter D. Spencer was partially supported by the Research Training Program (Stipend) funded by Department of Education and Training (Australia). Daniel C. Elton acknowledges his PhD. thesis advisor, Prof. Marivi Fernández-Serra, and Prof. Martin Bier for inspiring this line of inquiry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter D. Spencer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Elton, D.C., Spencer, P.D. (2021). Pathological Water Science – Four Examples and What They Have in Common. In: Gadomski, A. (eds) Water in Biomechanical and Related Systems. Biologically-Inspired Systems, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-030-67227-0_8

Download citation