Skip to main content

An Interdisciplinary Model for Graphical Representation

  • Conference paper
  • First Online:
Software Engineering and Formal Methods. SEFM 2020 Collocated Workshops (SEFM 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12524))

Included in the following conference series:

Abstract

The paper questions whether data-driven and problem-driven models are sufficient for a software to automatically represent a meaningful graphical representation of scientific findings. The paper presents descriptive and prescriptive case studies to understand the benefits and the shortcomings of existing models that aim to provide graphical representations of data-sets. First, the paper considers data-sets coming from the field of software metrics and shows that existing models can provide the expected outcomes for descriptive scientific studies. Second, the paper presents data-sets coming from the field of human mobility and sustainable development, and shows that a more comprehensive model is needed in the case of prescriptive scientific fields requiring interdisciplinary research. Finally, an interdisciplinary problem-driven model is proposed to guide the software users, and specifically scientists, to produce meaningful graphical representation of research findings. The proposal is indeed based not only on a data-driven and/or problem-driven model but also on the different knowledge domains and scientific aims of the experts, who can provide the information needed for a higher-order structure of the data, supporting the graphical representation output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahling, A., Herczeg, J., Herczeg, M., Böcker, H.-D.: Beyond visualization: knowing and understanding. In: Gorny, P., Tauber, M.J. (eds.) IPsy 1988. LNCS, vol. 439, pp. 16–26. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52698-6_2

    Chapter  Google Scholar 

  2. Bechtel, W., Abrahamsen, A.: Explanation: a mechanist alternative. Stud. Hist. Philos. Biol. Biomed. Sci. 36(2), 421–441 (2005)

    Article  Google Scholar 

  3. Eklund, P., Haemmerlé, O. (eds.): Conceptual Structures: Knowledge Visualization and Reasoning. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70596-3

    Book  MATH  Google Scholar 

  4. Zacks, J., Tversky, B.: Bars and lines: a study of graphic communication. Mem. Cogn. 27(6), 1073–1079 (1999). https://doi.org/10.3758/BF03201236

    Article  Google Scholar 

  5. Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Vis. Comput. Graph. 8(1), 1–8 (2002)

    Article  MathSciNet  Google Scholar 

  6. Bergel, A., et al.: A domain-specific language for visualizing software dependencies as a graph. In: 2014 Second IEEE Working Conference on Software Visualization, pp. 45–49 (2014)

    Google Scholar 

  7. Zhu, J., et al.: A data-driven approach to interactive visualization of power systems. IEEE Trans. Power Syst. 26(4), 2539–2546 (2011)

    Article  Google Scholar 

  8. Marai, G.E.: Activity-centered domain characterization for problem-driven scientific visualization. IEEE Trans. Vis. Comput. Graph. 24(1), 913–922 (2018)

    Article  Google Scholar 

  9. Grimaldi, D.A., Engel, M.S.: Why descriptive science still matters. Bioscience 57(8), 646–647 (2007)

    Article  Google Scholar 

  10. Brown, R.V., Vári, A.: Towards a research agenda for prescriptive decision science: the normative tempered by the descriptive. Acta Psychol. 1–3, 33–48 (1992)

    Article  Google Scholar 

  11. Kim, I., Cho, G., Hwang, J., Li, J., Han, S.: Visualization of neutral model of ship pipe system using X3D. In: Luo, Y. (ed.) CDVE 2010. LNCS, vol. 6240, pp. 218–228. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16066-0_33

    Chapter  Google Scholar 

  12. Kerren, A., et al.: Information Visualization: Human-Centered Issues and Perspectives. LNCS. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70956-5

    Book  Google Scholar 

  13. Hansen, C.: Scientific Visualization: Uncertainty, Multifield, Biomedical, and Scalable Visualization. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6497-5

    Book  MATH  Google Scholar 

  14. Velasco-Montero, D., et al.: Optimum selection of DNN model and framework for edge inference. IEEE Access 6, 51680–51692 (2018)

    Article  Google Scholar 

  15. Godfrey, P., et al.: Interactive visualization of large data sets. IEEE Trans. Knowl. Data Eng. 28(8), 2142–2157 (2016)

    Article  Google Scholar 

  16. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 20(6), 476–493 (1994)

    Article  Google Scholar 

  17. Roux, O., Bourdon, J. (eds.): Computational Methods in Systems Biology. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23401-4

    Book  Google Scholar 

  18. Salerno, J., Yang, S.J., Nau, D., Chai, S.-K. (eds.): Social Computing, Behavioral-Cultural Modeling and Prediction. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19656-0

    Book  Google Scholar 

  19. Faye, S., et al.: Characterizing user mobility using mobile sensing systems. Int. J. Distrib. Sens. Netw. 13(8) (2017). https://doi.org/10.1177/1550147717726310

  20. Forkan, A., et al.: AqVision: a tool for air quality data visualisation and pollution-free route tracking for smart city. In: 2019 23rd InfoVis, pp. 47–51 (2019)

    Google Scholar 

  21. Hall, K.W., et al.: Design by immersion: a transdisciplinary approach to problem-driven visualizations. IEEE Trans. Vis. Comput. Graph. 26(1), 109–118 (2020)

    Article  Google Scholar 

  22. Turner, M., Fauconnier, G.: A mechanism of creativity. Poetics Today 20(3), 397–418 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Antonio Pierro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pierro, G.A., Bergel, A., Tonelli, R., Ducasse, S. (2021). An Interdisciplinary Model for Graphical Representation. In: Cleophas, L., Massink, M. (eds) Software Engineering and Formal Methods. SEFM 2020 Collocated Workshops. SEFM 2020. Lecture Notes in Computer Science(), vol 12524. Springer, Cham. https://doi.org/10.1007/978-3-030-67220-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67220-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67219-5

  • Online ISBN: 978-3-030-67220-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics