Skip to main content

Nature of Uranous Ore Formation in Hypergenesis Region

  • Chapter
  • First Online:
Uranous Mineralogy of Hypergene Reduction Region

Part of the book series: Springer Mineralogy ((MINERAL))

  • 130 Accesses

Abstract

There biogenic aspect of uranous ore formation is considered in light of geochemical barriers doctrine and modern data of geomicrobiology and environmental mineralogy connected with bioremediation and radionuclide immobilization. Localization of hypergenesis region in the Earth biosphere is key point in discussion of such U-ores genesis. The review of uranous minerals formation in sedimentary strata was performed on concept of biocos systems, formulated by V.I. Vernadsky, and based on one of main Geochemistry laws, named after him. Such unexpected conclusion on biogenic formation of phosphate component in black U-ores was received when question about phosphorus source for Ningyoite was solved. Geological observations, mineralogical data and experiments on bacterial reduction of uranium show: phosphorus source in natural solutions is decay products of organic matter of plant residues in sedimentary strata. It was shown, that only active participation of microbiota in organic matter decomposition can explain both mobility of uranium and so phosphorus entrance into solution from plant residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Behrends T, Cappellen P (2005) Competition between enzymatic and abiotic reduction of uranium (VI) under iron reducing conditions. Chem Geol 220(3–4):315–327

    Article  Google Scholar 

  • Belova LN, Doynikova OA (2003) Formation conditions of uranium minerals in the oxidation zone of uranium deposits. Geol Ore Deposits 45(2):130–132. [In Russian]

    Google Scholar 

  • Bernier-Latmani R, Veeramani H, Dalla Vecchia E et al (2010) Non-uraninite products of microbial U (VI) reduction. Environ Sci Technol 44:9456–9462

    Article  Google Scholar 

  • Boyle DR, Littlejohn AL, Roberts AC et al (1981) Ningyoite in uranium deposits of south Central British-Columbia, first north American occurrence. Canad Miner 19(4):325–331

    Google Scholar 

  • Cai С, Li H, Qin M, Luo X, Wang F, Ou G (2007) Biogenic and petroleum-related ore-forming processes in Dongsheng uranium deposit, NW China. Ore Geol Rev 32:262–274

    Article  Google Scholar 

  • Calas G, McMillan PF, Bernier-Latmani R (2015) Environmental mineralogy: new challenges, new materials. Elements 11:247–252

    Article  Google Scholar 

  • Cerrato JM, Ashner MN, Alessi DS, Lezama-Pacheco JS, Bernier-Latmani R, Bargar J, Giammar DE (2013) Relative reactivity of biogenic and chemogenic uraninite and biogenic non-crystalline U(IV). Environ Sci Technol 47:9756–9763

    Article  Google Scholar 

  • Doinikova OА (2007) Uranium deposits with a new phosphate type of blacks. Geol Ore Deposit 49(1):80–86. https://doi.org/10.1134/S1075701507010047

    Article  Google Scholar 

  • Doinikova OA, Solodov IN, Chertok MB (2009) Mineral composition of uranium ore at the Dalmatovo deposit, Russia. Geol Ore Deposit 51(6):505–514

    Article  Google Scholar 

  • Doynikova OA (2003) Genetic crystal chemistry of mineral components in uranium blacks. Geochem Int 41(12):1214–1220

    Google Scholar 

  • Doynikova OA (2012) Mineralogy of uranium in the reduction zone of supergenesis (as revealed by electron microscopy). Publ H FIZMATLIT, Moscow, p 216. [In Russian]

    Google Scholar 

  • Doynikova OA (2016) Phosphate composition of uranium sooty (blacks) as indicator of their biogenic nature. Proc higher educational establishments. Geol & Exploration 5:17–29. [in Russian with English abstract]. https://doi.org/10.32454/0016-7762-2016-5-18-25

    Article  Google Scholar 

  • Doynikova OA (2017) The biogenic aspect of the uranium blacks formation (manifestation of the law named after V.I. Vernadsky). In: Kasimov N, Gennadiev A (eds) Landscape geochemistry/100th anniversary of AI Perelman. Publ H APR, Moscow, pp 524–543. [In Russian]

    Google Scholar 

  • Doynikova OA, Belova LN, Gorshkov AI Sivtsov AV (2002) The polymineral nature of uranium blacks. Uranium deposits: from their genesis to their environmental aspects (Proc. Intern. Workshop. URANIUM 2002) Czech Geol. Survey, Prague, 45–48

    Google Scholar 

  • Doynikova OA, Belova LN, Gorshkov AI, Sivtsov AV (2003) Uranium blacks: questions of genesis and mineral composition. Geol Ore Deposit 45(6):452–465. [In Russian]

    Google Scholar 

  • Erlich HL, Newman DK (2008) Geomicrobiology, 5th edn. CRC Press, Boca Raton, p 628

    Book  Google Scholar 

  • Hydrogenic uranium deposits (1980) Ed. Perelman AI. Atomizdat, Moscow: 270 [in Russian]

    Google Scholar 

  • Iwatsuki T, Murakami Y, Naganuma T, Hama K (2003) Redox buffer capacity of sedimentary rocks around uranium deposit (study of water-mineral-microbe system at the Tono uranium deposit, Japan). Chikyukagaku (Geochemistry) 37:71–82

    Google Scholar 

  • Kajitani K (1970) A geochemical study on the genesis of ningyoite, the special calcium uranous phosphate mineral. Econ Geol 65:470–480

    Article  Google Scholar 

  • Kalmykov SN (2008) The role of colloidal particles in the migration of actinides with groundwater. Diss… . Dr. chem. Sciences: 02.00.14. Moscow, 308 [in Russian]

    Google Scholar 

  • Khijniak TV, Slobodkin AI, Coker V et al (2005) Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterra-bacterium ferri reducens. Appl Environ Microb 71(10):6423–6426

    Article  Google Scholar 

  • Khizhnyak TV (2013) Bacterial transformation and immobilization of heavy metals and radionuclides. Dis… . doctor of biological Sciences: 03.02.03. Moscow. 212. [in Russian]

    Google Scholar 

  • Kislyakov YM, Shchetochkin VN (2000) Hydrogenic ore formation, vol 608. Geoinformark, Moscow. [in Russian]

    Google Scholar 

  • Kochkin BT, Solodov IN, Ganina NI et al (2017) Geochemical features of the ore-bearing medium in uranium deposits in the Khiagda ore field. Geol Ore Deposits 59:341–353. https://doi.org/10.1134/S1075701517050026

    Article  Google Scholar 

  • Lezama-Pacheco JS, Cerrato JM, Veeramani H et al (2015) Long-term in situ oxidation of biogenic Uraninite in an alluvial aquifer: impact of dissolved oxygen and calcium. Environ Sci Technol 49:7340–7347. https://doi.org/10.1021/acs.est.5b00949

    Article  Google Scholar 

  • Lisitsin AK (1975) Hydrogeochemistry of ore formation. Nedra, Moscow, p 247. [in Russian]

    Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Article  Google Scholar 

  • Makarov MI (2009) Phosphor of organic matter of soils. Moscow, GEOS, p 370

    Google Scholar 

  • Malkovskii VI, Petrov VA, Dikov YP et al (2014) An analysis of the role of colloids in uranium transport in groundwater within the U-Mo deposits of the Streltsovsky ore field (eastern Transbaikalia region). Dokl Earth Sci 454:29–31. https://doi.org/10.1134/S1028334X14010024

    Article  Google Scholar 

  • Malkovsky V (2011) In: Kalmykov SN, Denecke MA (eds) Theoretical analysis of colloid-facilitated transport of radionuclides by groundwater. Actinide nanoparticles research. Springer, Berlin, Heidelberg, pp 195–243

    Google Scholar 

  • Malkovsky VI, Petrov VA, Dikov YP et al (2015) Colloid-facilitated transport of uranium by groundwater at the U–Mo ore field in eastern Transbaikalia. Environ Earth Sci 73:6145–6152. https://doi.org/10.1007/s12665-014-3840-2

    Article  Google Scholar 

  • Marchik TP, Efremov A (2006) L. Soil science with the basics of crop production. Grodno State University, Grodno, p 249. [in Russian]

    Google Scholar 

  • Markov A (2015) Birth of complexity/evolutionary biology today: unexpected discoveries and new questions. АСТ: CORPUS, Moscow, p 527. [in Russian]

    Google Scholar 

  • Min M, Xu H, Chen J, Fayek M (2005) Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China. Ore Geol Rev 26:198–206

    Article  Google Scholar 

  • Perelman AI (1968) Geochemistry of epigenetic processes (Hypergenesis zone). Publ H: Nedra, Moscow, p 331. [in Russian]

    Google Scholar 

  • Perelman AI, Kasimov NS (1999) Landscape geochemistry. Astrea 2000, Moscow. [in Russian]

    Google Scholar 

  • Priyadarshini N, Sampath M, Kumar S et al (2014) Probing uranium (IV) hydrolyzed colloids and polymers by light scattering, Journal of nuclear chemistry. 2014:232967. https://doi.org/10.1155/2014/232967

  • Rare metal uranium ore formation in sedimentary rocks (1995) Collection of scientific papers. Science, Moscow, p 256. [in Russian]

    Google Scholar 

  • Seaman JC, Buettner SW, Hyun-shik C (2015) Phosphate–uranium interactions in soils. In: Selim HM (ed) Phosphate in soil. CRC Press, pp 59–97

    Google Scholar 

  • Singer DM, Farges F, Brown GE Jr (2009) Biogenic nanoparticulate UO2: synthesis, characterization, and factors affecting surface reactivity. Geochim Cosmochim Acta 73(12):3593–3611. https://doi.org/10.1016/j.gca.2009.03.031

    Article  Google Scholar 

  • Sivaswamy V, Boyanov MI, Peyton BM, Viamajala S, Gerlach R, Apel WA, Sani RK, Dohnalkova A, Kemner KM, Borch T (2011) Multiple mechanisms of uranium immobilization by Cellulomonas sp. strain ES6. Biotechnol Bioeng 108(2):264–276

    Article  Google Scholar 

  • Slobodkin AI (2008) Thermophilic iron-reducing prokaryotes. Dis. Dr. Biol. Sciences: 03.00.07 (microbiology). Inst Microbiology RAS, Moscow, p 336

    Google Scholar 

  • Southam G, Sanders JA (2005) The geomicrobiology of ore deposits. Econ Geol 100:1067–1084

    Article  Google Scholar 

  • Strakhov NM (1957) Stages of sedimentary rocks formation and tasks of their study. In: methods of studying sedimentary rocks, vol 1. Gosgeoltehizdat, Moscow, pp 7–28. [in Russian]

    Google Scholar 

  • Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2005a) Direct microbial reduction and subsequent preservation of uranium in natural near-surface sediment. Appl Environ Microbiol 71(4):1790–1797

    Article  Google Scholar 

  • Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2005b) Direct microbial reduction and subsequent preservation of uranium in natural near-surface sediment. Appl Environ Microb 71(4):1790–1797

    Article  Google Scholar 

  • Uranium (2016) Resources, production and demand. OECD (2016) NEA/IAEA/:7301

    Google Scholar 

  • Velichkin VI, Kushnerenko VK, Tarasov NN et al (2005) Geology and formation conditions of the Karku unconformity-type deposit in the deposit Karku in northern Ladoga region (Russia). Geol Ore Deposit 47(2):87–112. [In Russian]

    Google Scholar 

  • Velichkin VI, Tarasov NN, Andreeva OV et al (2003) Geology and formation conditions of Karkhu deposit–the first uranium “unconformity” deposit in Russia. Proc. AN “URANIUM GEOCHEMISTRY 2003” Nancy, France: 371–374

    Google Scholar 

  • Vinichenko PV (2004) Theory of biogenic ore formation exemplified by uranium deposits. Sosnovgeologiya, Irkutsk. [In Russian]

    Google Scholar 

  • Wang Y, Frutschi M, Bagnoud A, Suvorova E, Mcgivney E, Chesaux L et al (2014) Geochemical controls on the formation of U(IV)-bearing colloids in a mining-impacted natural wetland. Goldschmidt Abstracts:2647

    Google Scholar 

  • Wang Y, Frutschi M, Suvorova E, Phrommavanh V, Descostes M, Osman AA, Geipel G, Bernier-Latmani R (2013) Mobile uranium (IV)-bearing colloids in a mining-impacted wetland. Nat Commun 4. https://doi.org/10.1038/ncomms3942/

  • World Distribution of Uranium Deposits (UDEPO) 2016 (2018) IAEA-TECDOC-1843, IAEA, Vienna

    Google Scholar 

  • Wülser P-A, Brugger J, Foden J, Pfeifer H-R (2011) The sandstone-hosted Beverley uranium deposit, Lake Frome Basin, South Australia: mineralogy, geochemistry, and a time-constrained model for its genesis. Econ Geol 106:835–867

    Article  Google Scholar 

  • Zammit CM, Shuster JP, Gagen EJ, Southam G (2015) The Geomicrobiology of supergene metal deposits. Elements 11:337–342

    Article  Google Scholar 

  • Zavarzin GA, Kolotilova NN (2001) Introduction to natural-environmental microbiology. Publ H University, Moscow

    Google Scholar 

  • Zhao L, Cai C, Jin R, Li J, Li H, Wei J, Guo H, Zhang B (2018) Mineralogical and geochemical evidence for biogenic and petroleum-related uranium mineralization in the Qianjiadian deposit, NE China. Ore Geol Rev 101:273–292. https://doi.org/10.1016/j.oregeorev.2018.07.025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Doynikova, O.A. (2021). Nature of Uranous Ore Formation in Hypergenesis Region. In: Uranous Mineralogy of Hypergene Reduction Region. Springer Mineralogy. Springer, Cham. https://doi.org/10.1007/978-3-030-67183-9_6

Download citation

Publish with us

Policies and ethics