Skip to main content

Calculation of the Current Distribution Function Over a Radiating Structure with a Chiral Substrate Using Hypersingular Integral Equations

  • Conference paper
  • First Online:
Advances in Artificial Systems for Medicine and Education IV (AIMEE 2020)

Abstract

This article is devoted to the development of a method for electrodynamic analysis of strip radiating structures based on chiral metamaterials, which provides high accuracy in calculating their characteristics with small computational resources. A mathematical model of investigated strip radiating structure based on chiral metamaterials is presented. The calculation of the current density distribution function over the emitter of such a structure are shown. The calculations were carried out using of above method and the Feko electrodynamic modeling software package in order to verify the obtained results. Good qualitative agreement of the obtained results is shown. This method can be used in high-efficiency computer-aided design tools for the development of new-generation antennas used in modern communication and telecommunications systems, including medical monitoring systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Engheta, N.: The theory of chirostrip antennas. Proceedings of the 1988 URSI International Radio Science Symposium Syracuse, New York, p. 213 (1988)

    Google Scholar 

  2. Engheta, N., Pelet, P.: Modes in chirowaveguides. Opt. Lett. 14(11), 593–595 (1989)

    Article  Google Scholar 

  3. Toscano, A., Vegni, L.: Evaluation of the resonant frequencies and bandwidth in microstrip antennas with a chiral grounded slab. Int. J. Electron. 81(6), 671–676 (1996)

    Article  Google Scholar 

  4. Zebiri, C., Benabdelaziz, F., Lashab, M.: Bianisotropic superstrate effect on rectangular microstrip patch antenna parameters. In: META, January 2012 (2012)

    Google Scholar 

  5. Zebiri, C., Lashab, M., Benabdelaziz, F.: Asymmetrical effects of bi-anisotropic substrate-superstrate sandwich structure on patch resonator. Progress Electromag. Res. B 49, 319–337 (2013)

    Article  Google Scholar 

  6. Zebiri, C., Daoudi, S., Benabdelaziz, F., Lashab, M., Sayad, D., Ali, N.T., Abd-Alhameed, R.A.: Gyro-chirality effect of bianisotropic substrate on the operational of rectangular microstrip patch antenna. Int. J. Appl. Electromagn. Mech. 51, 249–260 (2016)

    Article  Google Scholar 

  7. Klyuev, D.S., Neshcheret, A.M., Osipov, O.V., Potapov, A.A., Sokolova, Yu.V.: The method of singular integral equations in the theory of microstrip antennas based on chiral metamaterials. In: 12th Chaotic Modeling and Simulation International Conference, Springer Proceedings in Complexity, pp. 267–294 (2020). https://doi.org/10.1007/978-3-030-39515-5_22

  8. Abramov, V.Y., Klyuev, D.S., Neshcheret, A.M., Osipov, O.V., Potapov, A.A.: Input impedance of a microstrip antenna with a chiral substrate based on left-handed spirals. J. Eng. JOE 19, 6218–6221 (2019)

    Google Scholar 

  9. Buzov, A.L., Buzova, M.A., Klyuev, D.S., Mishin, D.V., Neshcheret, A.M.: Calculating the input impedance of a microstrip antenna with a substrate of a chiral metamaterial. J. Commun. Tech. Electron. 63(11), 1259–1264 (2018)

    Article  Google Scholar 

  10. Ni, J.: Analysis of Shielded and Open Microstrip Lines of Double Negative Metamaterials Using Spectral Domain Approach (SDA), p. 65. Iowa State University, Ames (2008)

    Google Scholar 

  11. Dwivedi, S., Mishra, V., Kosta, Y.P.: Directivity enhancement of miniaturized microstrip patch antenna using metamaterial cover. Int. J. Appl. Electromagn. Mech. 47(2), 399–409 (2015)

    Article  Google Scholar 

  12. Kenari, M.A.: Printed planar patch antennas based on metamaterial. International Journal of Electronics Letters 2(1), 37–42 (2014)

    Article  Google Scholar 

  13. Deepak, D., Kaur, J.: Dual band high directivity microstrip patch antenna rotatedstepped-impedance array loaded with CSRRs for WLAN applications. Int. J. Wireless Microwave Technol. 4, 1–11 (2016). http://www.mecs-press.net. https://doi.org/10.5815/ijwmt.2016.04.01. Accessed July 2016 in MECS

  14. Kaur, P., Aggarwal, S.K., De, A.: Design and investigation of circularly polarized RMPA with chiral metamaterial cover. Int. J. Wireless Microwave Technol. 3, 61–70 (2016). http://www.mecs-press.net. https://doi.org/10.5815/ijwmt.2016.03.07. Accessed May 2016 in MECS

  15. Shareef, A.N., Shaalan, A.B.: Fractal peano antenna covered by two layers of modified ring resonator. Int. J. Wireless Microwave Technol. 5(2), 1–11 (2015). http://www.mecs-press.net. https://doi.org/10.5815/ijwmt.2015.02.01. Accessed Apr 2015 in MECS

  16. Saleh, A.A., Abdullah, A.S.: A novel design of patch antenna loaded with complementary split-ring resonator and L-shape slot for (WiMAX/WLAN) applications. Int. J. Wireless Microwave Technol. 4(3), 16–25 (2014). http://www.mecs-press.net. https://doi.org/10.5815/ijwmt.2014.03.02. Accessed Oct 2014 in MECS

  17. Caloz, C., Itoh, T., Rennings, A.: CRLH metamaterial leaky-wave and resonant antennas. IEEE Antennas Propag. Mag. 50(5), 25–39 (2008)

    Article  Google Scholar 

  18. Erentok, A., Ziolkowski, R.W.: Metamaterial-inspired efficient electrically small antennas. IEEE Trans. Antennas Propag. 56(3), 691–707 (2008)

    Article  Google Scholar 

  19. Mao, S.-G., Chen, C.-M., Chang, D.-C.: Modeling of slow-wave EBG structure for printed-bowtie antenna array. IEEE Antennas Wireless Propag. Lett. 1, 124–127 (2002)

    Article  Google Scholar 

  20. Alibakhshikenari, M., Khalily, M., Virdee, B.S., See, C.H., Abd-Alhameed, R., Limiti, E.: Mutual coupling suppression between two closely placed microstrip patches using EM-bandgap metamaterial fractal loading. IEEE Access (2019). https://doi.org/10.1109/ACCESS.2019.2899326

    Article  Google Scholar 

  21. Pozar, D.M.: Radiation and scattering from a microstrip patch on a uniaxial substrate. IEEE Trans. Antennas Propagat. 35(6), 613–621 (1987)

    Article  Google Scholar 

  22. Kolmakova, N., Prikolotin, S., Kirilenko, A., Perov, A.: Simple example of polarization plane rotation by the fringing fields interaction. In: IEEE European Microwave Conference (EuMC), pp. 936–938 (2013)

    Google Scholar 

  23. Caloz, C., Sihvola, A.: Electromagnetic chirality, part 1: the macroscopic perspective. IEEE Antennas Propagat. Mag. 62(1), 58–71 (2020)

    Article  Google Scholar 

  24. Caloz, C., Sihvola, A.: Electromagnetic chirality, part 2: the macroscopic perspective. IEEE Antennas Propagat. Mag. 62(2), 58–71 (2020). https://doi.org/10.1109/MAP.2020.2969265

    Article  Google Scholar 

  25. Capolino, F.: Theory and Phenomena of Metamaterials, p. 992. Taylor & Francis/CRC Press, Boca Raton (2009)

    Google Scholar 

  26. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and series of elementary functions. Math. Comput. 40(161), 413–414 (1983)

    MATH  Google Scholar 

  27. Lifanov, I.K.: Singular Integral Equations and Discrete Vortices, p. 475. VSP, Utrecht (1996)

    Book  Google Scholar 

  28. Setukha, A.V., Bezobrazova, E.N.: The method of hypersingular integral equations in the problem of electromagnetic wave diffraction by a dielectric body with a partial perfectly conducting coating. Russ. J. Numer. Anal. Math. Model. 32(6), 371–380 (2017)

    Article  MathSciNet  Google Scholar 

  29. Saffman, P.G.: Vortex Dynamics, p. 311. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  30. Gibson Walton, C.: The Method of Moments in Electromagnetics, p. 448. CRC Press/Taylor & Francis Group, Boca Raton (2015)

    MATH  Google Scholar 

  31. Klyuev, D.S., Sokolova, Y.V.: A hypersingular integral equation for current density on the surface of a microstrip vibrator. Tech. Phys. Lett. 40(2), 112–115 (2014). https://doi.org/10.1134/S1063785014020102

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (A.A. Potapov) thanks the Russian Foundation for Basic Research (project no. 18-08-01356-a) for the support, as well as the project “Leading Talents”, no. 00201502 (2016–2020) at JiNan University (Guangzhou, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Potapov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beliaeva, V.S., Klyuev, D.S., Neshcheret, A.M., Osipov, O.V., Potapov, A.A. (2021). Calculation of the Current Distribution Function Over a Radiating Structure with a Chiral Substrate Using Hypersingular Integral Equations. In: Hu, Z., Petoukhov, S., He, M. (eds) Advances in Artificial Systems for Medicine and Education IV. AIMEE 2020. Advances in Intelligent Systems and Computing, vol 1315. Springer, Cham. https://doi.org/10.1007/978-3-030-67133-4_10

Download citation

Publish with us

Policies and ethics