Skip to main content

Global Bifurcation

  • Chapter
  • First Online:
Non-Local Cell Adhesion Models

Part of the book series: CMS/CAIMS Books in Mathematics ((CMS/CAIMS BM,volume 1))

  • 458 Accesses

Abstract

For each \(\bar {u}>0\), we found local bifurcations at \((\alpha _n, \bar {u})\) with non-trivial eigenfunctions e n of \({\mathcal {D}}_u {\mathcal {F}}(\alpha _n, \bar {u})\) in \(H^2_P\) be given by

$$\displaystyle \alpha _n = \frac {n \pi }{\bar {u} h'(\bar {u}) L M_n(\omega )} , \qquad e_n(x) = \cos \left (\frac {2 \pi n x}{L}\right ), $$

where M n(ω) are the Fourier sine coefficients of ω (see 3.4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.buttenschoen.ca.

  2. 2.

    http://www.mathematik.uni-halle.de/wissenschaftliches_rechnen/forschung/software/.

  3. 3.

    https://docs.scipy.org/doc/numpy-dev/f2py/.

References

  1. R. Bailo, J.A. Carrillo, J. Hu, Fully discrete positivity-preserving and energy-dissipating schemes for aggregation-diffusion equations with a gradient-flow structure. Commun. Math. Sci. 18(5), 1259–1303 (2020)

    MathSciNet  MATH  Google Scholar 

  2. R. Bailo, J.A. Carrillo, H. Murakawa, M. Schmidtchen, Convergence of a fully discrete and energy-dissipating finite-volume scheme for aggregation-diffusion equations (2020). Preprint, arXiv:2002.10821

    Google Scholar 

  3. J. Barré, J.A. Carrillo, P. Degond, D. Peurichard, E. Zatorska, Particle interactions mediated by dynamical networks: assessment of macroscopic descriptions. J. Nonlinear Sci. 28(1), 235–268 (2018)

    MathSciNet  MATH  Google Scholar 

  4. J. Barré, P. Degond, E. Zatorska, Kinetic theory of particle interactions mediated by dynamical networks. Multiscale Model. Simul. 15(3), 1294–1323 (2017)

    MathSciNet  Google Scholar 

  5. P.L. Buono, R. Eftimie, Symmetries and pattern formation in hyperbolic versus parabolic models of self-organised aggregation. J. Math. Biol. 71(4), 847–881 (2015)

    MathSciNet  MATH  Google Scholar 

  6. A. Buttenschoen, T. Kolokolnikov, M.J. Ward, J. Wei, Cops-on-the-dots: the linear stability of crime hotspots for a 1-d reaction-diffusion model of urban crime. Eur. J. Appl. Math. 31(5), 1–47 (2019)

    MathSciNet  Google Scholar 

  7. A. Buttenschön, T. Hillen, A. Gerisch, K.J. Painter, A space-jump derivation for non-local models of cell-cell adhesion and non-local chemotaxis. J. Math. Biol. 76(1), 429–456 (2018)

    MathSciNet  MATH  Google Scholar 

  8. J.A. Carrillo, X. Chen, Q. Wang, Z.A. Wang, L. Zhang, Phase transitions and bump solutions of the Keller–Segel model with volume exclusion. SIAM J. Appl. Math. 80(1), 232–261 (2020)

    MathSciNet  MATH  Google Scholar 

  9. J.A. Carrillo, A. Chertock, Y. Huang, A finite-volume method for nonlinear nonlocal equations with a gradient flow structure (2014). Preprint, arXiv:1402.4252

    Google Scholar 

  10. J.A. Carrillo, R.S. Gvalani, G.A. Pavliotis, A. Schlichting, Long-time behaviour and phase transitions for the Mckean–Vlasov equation on the torus. Arch. Ration. Mech. Anal. 235(1), 635–690 (2020)

    MathSciNet  MATH  Google Scholar 

  11. J.A. Carrillo, Y. Huang, M. Schmidtchen, Zoology of a nonlocal cross-diffusion model for two species. SIAM J. Appl. Math. 78(2), 1078–1104 (2018)

    Article  MathSciNet  Google Scholar 

  12. J.A. Carrillo, H. Murakawa, M. Sato, H. Togashi, O. Trush, A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation (2019). Preprint, arXiv:1901.02919

    Google Scholar 

  13. R. Courant, Ein allgemeiner Satz zur Theorie der Eigenfunktione selbstadjungierter Differentialausdrücke. Nach. Ges. Wiss. Göttingen Math.-Phys. Kl. 81–84 (1923)

    Google Scholar 

  14. M.G. Crandall, P.H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Ration. Mech. Anal. 52(2), 161–180 (1973)

    Article  MathSciNet  Google Scholar 

  15. P. Deuflhard, Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, vol. 35 (Springer Science & Business Media, Berlin, 2011)

    Book  Google Scholar 

  16. E. Doedel, H.B. Keller, J.P. Kernevez, Numerical analysis and control of bifurcation problems (i): bifurcation in finite dimensions. Int. J. Bifurcat. Chaos 1(03), 493–520 (1991)

    Article  MathSciNet  Google Scholar 

  17. E. Doedel, H.B. Keller, J.P. Kernevez, Numerical analysis and control of bifurcation problems (ii): bifurcation in infinite dimensions. Int. J. Bifurcat. Chaos 1(04), 745–772 (1991)

    Article  MathSciNet  Google Scholar 

  18. P.E. Farrell, A. Birkisson, S.W. Funke, Deflation techniques for finding distinct solutions of nonlinear partial differential equations. SIAM J. Sci. Comput. 37(4), A2026–A2045 (2015)

    Article  MathSciNet  Google Scholar 

  19. H. Fujii, M. Mimura, Y. Nishiura, A picture of the global bifurcation diagram in ecological interacting and diffusing systems. Physica D 5(1), 1–42 (1982)

    Article  MathSciNet  Google Scholar 

  20. H. Fujii, Y. Nishiura, Global bifurcation diagram in nonlinear diffusion systems, in Northholland Mathematics Studies (Elsevier, Amsterdam, 1983), pp. 17–35

    Google Scholar 

  21. A. Gerisch, Numerical methods for the simulation of taxis diffusion reaction systems. Ph.D. Thesis, Martin-Luther-Universitat Halle-Wittenberg, 2001

    Google Scholar 

  22. A. Gerisch, K.J. Painter, Mathematical modeling of cell adhesion and its applications to developmental biology and cancer invasion, in Cell Mechanics: From Single Scale-Based Models to Multiscale Modelling, ed. by A. Chauviére, L. Preziosi, C. Verdier (CRC Press, Boca Raton, 2010), pp. 319–350

    MATH  Google Scholar 

  23. M. Golubitsky, I. Stewart, The Symmetry Perspective. Progress in Mathematics (Birkhäuser, Basel, 2002)

    Google Scholar 

  24. C.R. Harris, K.J. Millman, S.J. van der Walt, R.A. Gommers, P.I. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N.J. Smith, Array programming with numpy. Nature 585(7825), 357–362 (2020)

    Article  Google Scholar 

  25. T.J. Healey, Global bifurcations and continuation in the presence of symmetry with an application to solid mechanics. SIAM J. Math. Anal. 19(4), 824–840 (1988)

    Article  MathSciNet  Google Scholar 

  26. T.J. Healey, H.J. Kielhöfer, Symmetry and nodal properties in the global bifurcation analysis of quasi-linear elliptic equations. Arch. Ration. Mech. Anal. 113(4), 299–311 (1991)

    MathSciNet  MATH  Google Scholar 

  27. T.J. Healey, H.J. Kielhöfer, Preservation of nodal structure on global bifurcating solution branches of elliptic equations with symmetry. J. Differ. Equ. 106(1), 70–89 (1993)

    Article  MathSciNet  Google Scholar 

  28. T. Hillen, A. Potapov, The one-dimensional chemotaxis model: global existence and asymptotic profile. Math. Methods Appl. Sci. 27(15), 1783–1801 (2004)

    Article  MathSciNet  Google Scholar 

  29. K. Kang, T. Kolokolnikov, M.J. Ward, The stability and dynamics of a spike in the one-dimensional Keller-Segel model. IMA J. Appl. Math. 72(2), 140–162 (2005)

    Article  Google Scholar 

  30. T. Kolokolnikov, J. Wei, Stability of spiky solutions in a competition model with cross-diffusion. SIAM J. Appl. Math. 71(4), 1428–1457 (2011)

    Article  MathSciNet  Google Scholar 

  31. J. López-Gómez, Linear Second Order Elliptic Operators (World Scientific Publishing Company, Singapore, 2013)

    Book  Google Scholar 

  32. A. Meurer, C.P. Smith, M. Paprocki, O. Čertík, S.B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J.K. Moore, S. Singh, Sympy: symbolic computing in python. PeerJ. Comput. Sci. 3, e103 (2017)

    Article  Google Scholar 

  33. H. Murakawa, H. Togashi, Continuous models for cell-cell adhesion. J. Theor. Biol. 374, 1–12 (2015)

    MATH  Google Scholar 

  34. Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems. SIAM J. Math. Anal. 13(4), 555–593 (1982)

    Article  MathSciNet  Google Scholar 

  35. K.J. Painter, T. Hillen, Spatio-temporal chaos in a chemotaxis model. Physica D 240(4–5), 363–375 (2011)

    Article  Google Scholar 

  36. A.B. Potapov, T. Hillen, Metastability in chemotaxis models. J. Dyn. Differ. Equ. 17(2), 293–330 (2005)

    Article  MathSciNet  Google Scholar 

  37. M.H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations (Springer, Berlin, 1984)

    Book  Google Scholar 

  38. B.D. Sleeman, M.J. Ward, J.C. Wei, The existence and stability of spike patterns in a chemotaxis model. SIAM J. Appl. Math. 65(3), 790–817 (2005)

    Article  MathSciNet  Google Scholar 

  39. J. Wei, T. Kolokolnikov, M.J. Ward, The stability of steady-state hot-spot patterns for a reaction-diffusion model of urban crime. Discrete Continuous Dyn. Syst. B 19, 1373 (2014)

    Article  MathSciNet  Google Scholar 

  40. L.N. Trefethen, Approximation Theory and Approximation Practice, vol. 164 (SIAM, Philadelphia, 2019)

    Book  Google Scholar 

  41. W.H. Tse, M.J. Ward, Hotspot formation and dynamics for a continuum model of urban crime. Eur. J. Appl. Math. 27(3), 583–624 (2016)

    Article  MathSciNet  Google Scholar 

  42. P. Virtanen, R.A. Gommers, T.E. Oliphant, M. Haberland, T. Reddy, D. Cour napeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright, SciPy 1.0: fundamental algorithms for scientific computing in python. Nat. Methods 17(3), 261–272 (2020)

    Google Scholar 

  43. X. Wang, Q. Xu, Spiky and transition layer steady states of chemotaxis systems via global bifurcation and helly’s compactness theorem. J. Math. Biol. 66, 1241–1266 (2013)

    MathSciNet  MATH  Google Scholar 

  44. J. Wei, Existence and stability of spikes for the Gierer-Meinhardt system. Handbook of Differential Equations: Stationary Partial Differential Equations, ed. by M. Chipot, vol. 5 (North-Holland, Amsterdam, 2008), pp. 487–585

    Google Scholar 

  45. R. Weiner, B.A. Schmitt, H. Podhaisky, Rowmap—a row-code with Krylov techniques for large stiff odes. Appl. Numer. Math. 25, 303–319 (1997)

    Article  MathSciNet  Google Scholar 

  46. G.B. Wright, M. Javed, H. Montanelli, L.N. Trefethen, Extension of chebfun to periodic functions. SIAM J. Sci. Comput. 37(5), C554–C573 (2015)

    Article  MathSciNet  Google Scholar 

  47. T. Xiang, A study on the positive nonconstant steady states of nonlocal chemotaxis systems. Discrete Contin. Dyn. Syst. Ser. B 18(9), 2457–2485 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buttenschön, A., Hillen, T. (2021). Global Bifurcation . In: Non-Local Cell Adhesion Models. CMS/CAIMS Books in Mathematics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-67111-2_5

Download citation

Publish with us

Policies and ethics