Skip to main content

WDRN: A Wavelet Decomposed RelightNet for Image Relighting

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

The task of recalibrating the illumination settings in an image to a target configuration is known as relighting. Relighting techniques have potential applications in digital photography, gaming industry and in augmented reality. In this paper, we address the one-to-one relighting problem where an image at a target illumination settings is predicted given an input image with specific illumination conditions. To this end, we propose a wavelet decomposed RelightNet called WDRN which is a novel encoder-decoder network employing wavelet based decomposition followed by convolution layers under a muti-resolution framework. We also propose a novel loss function called gray loss that ensures efficient learning of gradient in illumination along different directions of the ground truth image giving rise to visually superior relit images. The proposed solution won the first position in the relighting challenge event in advances in image manipulation (AIM) 2020 workshop which proves its effectiveness measured in terms of a Mean Perceptual Score which in turn is measured using SSIM and a Learned Perceptual Image Patch Similarity score.

D. Puthussery and P.S. Hrishikesh—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: CVPR 2011, pp. 97–104 (2011)

    Google Scholar 

  2. Chen, Y., Wang, Y., Kao, M., Chuang, Y.: Deep photo enhancer: unpaired learning for image enhancement from photographs with GANs. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6306–6314 (2018)

    Google Scholar 

  3. Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, pp. 145–156. ACM Press/Addison-Wesley Publishing Co., USA (2000). https://doi.org/10.1145/344779.344855

  4. Dherse, A.P., Everaert, M.N., Gwizdała, J.J.: Scene relighting with illumination estimation in the latent space on an encoder-decoder scheme (2020)

    Google Scholar 

  5. El Helou, M., Zhou, R., Barthas, J., Süsstrunk, S.: VIDIT: virtual image dataset for illumination transfer. arXiv preprint arXiv:2005.05460 (2020)

  6. El Helou, M., Zhou, R., Süsstrunk, S., Timofte, R., et al.: AIM 2020: Scene relighting and illumination estimation challenge. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020 Workshops. LNCS, vol. 12537, pp. 499–518 (2020)

    Google Scholar 

  7. Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2017)

    Article  MathSciNet  Google Scholar 

  8. Ignatov, A., Kobyshev, N., Timofte, R., Vanhoey, K., Gool, L.V.: WESPE: weakly supervised photo enhancer for digital cameras. CoRR abs/1709.01118 (2017). http://arxiv.org/abs/1709.01118

  9. Ignatov, A., Kobyshev, N., Vanhoey, K., Timofte, R., Gool, L.V.: DSLR-quality photos on mobile devices with deep convolutional networks. CoRR abs/1704.02470 (2017). http://arxiv.org/abs/1704.02470

  10. Land, E.H.: The retinex. Am. Sci. 52(2), 247–264 (1964)

    Google Scholar 

  11. Liu, P., Zhang, H., Zhang, K., Lin, L., Zuo, W.: Multi-level wavelet-CNN for image restoration. CoRR abs/1805.07071 (2018). http://arxiv.org/abs/1805.07071

  12. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. CoRR abs/1511.03995 (2015). http://arxiv.org/abs/1511.03995

  13. Matusik, W., Loper, M., Pfister, H.: Progressively-refined reflectance functions from natural illumination. In: Rendering Techniques (2004)

    Google Scholar 

  14. Reddy, D., Ramamoorthi, R., Curless, B.: Frequency-space decomposition and acquisition of light transport under spatially varying illumination. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 596–610. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_43

    Chapter  Google Scholar 

  15. Sun, T., et al.: Single image portrait relighting. CoRR abs/1905.00824 (2019). http://arxiv.org/abs/1905.00824

  16. Wang, R., Zhang, Q., Fu, C., Shen, X., Zheng, W., Jia, J.: Underexposed photo enhancement using deep illumination estimation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6842–6850 (2019)

    Google Scholar 

  17. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13(4), 600–612 (2004)

    Google Scholar 

  18. Xu, Z., Sunkavalli, K., Hadap, S., Ramamoorthi, R.: Deep image-based relighting from optimal sparse samples. ACM Trans. Graph. 37(4) (2018). https://doi.org/10.1145/3197517.3201313

  19. Ying, Z., Li, G., Ren, Y., Wang, R., Wang, W.: A new low-light image enhancement algorithm using camera response model. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 3015–3022 (2017)

    Google Scholar 

  20. Yuan, S., Timofte, R., Leonardis, A., Slabaugh, G.: NTIRE 2020 challenge on image demoireing: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, June 2020

    Google Scholar 

  21. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR, pp. 586–595 (2018)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of NVIDIA PSG Cluster and Trivandrum Engineering Science and Technology Research Park (TrEST) in providing the computational resource to conduct this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hrishikesh Panikkasseril Sethumadhavan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puthussery, D., Panikkasseril Sethumadhavan, H., Kuriakose, M., Charangatt Victor, J. (2020). WDRN: A Wavelet Decomposed RelightNet for Image Relighting. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12537. Springer, Cham. https://doi.org/10.1007/978-3-030-67070-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67070-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67069-6

  • Online ISBN: 978-3-030-67070-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics