Abstract
Simple clause learning over theories SCL(T) is a decision procedure for the Bernays-Schoenfinkel fragment over bounded difference constraints BS(BD). The BS(BD) fragment consists of clauses built from first-order literals without function symbols together with simple bounds or difference constraints, where for the latter it is required that the variables of the difference constraint are bounded from below and above. The SCL(T) calculus builds model assumptions over a fixed finite set of fresh constants. The model assumptions consist of ground foreground first-order and ground background theory literals. The model assumptions guide inferences on the original clauses with variables. We prove that all clauses generated this way are non-redundant. As a consequence, expensive testing for tautologies and forward subsumption is completely obsolete and termination with respect to a fixed finite set of constants is a consequence. We prove SCL(T) to be sound and refutationally complete for the combination of the Bernays Schoenfinkel fragment with any compact theory. Refutational completeness is obtained by enlarging the set of considered constants. For the case of BS(BD) we prove an abstract finite model property such that the size of a sufficiently large set of constants can be fixed a priori.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsNotes
- 1.
The added theory atoms correspond exactly to the different cases in the unbounded region equivalence relation.
- 2.
\(\bar{r} \mathbin {\widehat{\simeq }_{\kappa }^{\eta }}\bar{s}\) can be checked by comparing the atoms in \(M^p\) or by fixing a satisfying assignment for \(M' \wedge M^p \wedge {\text {adiff}}(B)\).
References
Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. (AAECC) 5(3/4), 193–212 (1994). https://doi.org/10.1007/BF01190829
Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 572–586. Springer, Heidelberg (2006). https://doi.org/10.1007/11916277_39
Baumgartner, P., Fuchs, A., Tinelli, C.: (LIA) - model evolution with linear integer arithmetic constraints. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 258–273. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_19
Baumgartner, P., Waldmann, U.: Hierarchic superposition revisited. In: Lutz, C., Sattler, U., Tinelli, C., Turhan, A.-Y., Wolter, F. (eds.) Description Logic, Theory Combination, and All That. LNCS, vol. 11560, pp. 15–56. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22102-7_2
Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner, B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp. 24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9_2
Bromberger, M., Fiori, A., Weidenbach, C.: SCL with theory constraints. CoRR, abs/2003.04627 (2020)
de Moura, L., Bjørner, N.: Engineering DPLL(T) + saturation. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 475–490. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71070-7_40
de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 1–12. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_1
Downey, P.J.: Undecidability of Presburger arithmetic with a single monadic predicate letter. Technical report, Center for Research in Computer Technology, Harvard University (1972)
Faqeh, R., et al.: Towards dynamic dependable systems through evidence-based continuous certification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 416–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6_25
Fiori, A., Weidenbach, C.: SCL clause learning from simple models. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 233–249. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_14
Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 306–320. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_25
Horbach, M., Voigt, M., Weidenbach, C.: The universal fragment of Presburger arithmetic with unary uninterpreted predicates is undecidable. CoRR, abs/1703.01212 (2017)
Bayardo Jr, R.J., Schrag, R.: Using CSP look-back techniques to solve real-world SAT instances. In: Kuipers, B., Webber, B.L. (eds.) Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference, AAAI 1997, IAAI 1997, Providence, Rhode Island, USA, 27–31 July 1997, pp. 203–208 (1997)
Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_1
Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment over ground theories. Math. Comput. Sci. 6(4), 427–456 (2012). https://doi.org/10.1007/s11786-012-0135-4
Minsky, M.L.: Computation: Finite and Infinite Machines. Automatic Computation. Prentice-Hall, Englewood (1967)
Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53, 937–977 (2006)
Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) ESCoR: FLoC 2006 Workshop on Empirically Successful Computerized Reasoning. CEUR Workshop Proceedings, Seattle, WA, USA, vol. 192, pp. 18–33 (2006)
Ramos, A., van der Tak, P., Heule, M.J.H.: Between restarts and backjumps. In: Sakallah, K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 216–229. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21581-0_18
Reynolds, A., Barbosa, H., Fontaine, P.: Revisiting enumerative instantiation. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10806, pp. 112–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89963-3_7
Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer arithmetic. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 274–289. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_20
Silva, J.P.M., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: International Conference on Computer Aided Design, ICCAD, pp. 220–227. IEEE Computer Society Press (1996)
Voigt, M.: The Bernays–Schönfinkel–Ramsey fragment with bounded difference constraints over the reals is decidable. In: Dixon, C., Finger, M. (eds.) FroCoS 2017. LNCS (LNAI), vol. 10483, pp. 244–261. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66167-4_14
Voigt, M.: Decidable fragments of first-order logic and of first-order linear arithmetic with uninterpreted predicates. Ph.D. thesis, Saarland University, Saarbrücken, Germany (2019)
Acknowledgments
This work was funded by DFG grant 389792660 as part of TRR 248. We thank our reviewers for their valuable comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bromberger, M., Fiori, A., Weidenbach, C. (2021). Deciding the Bernays-Schoenfinkel Fragment over Bounded Difference Constraints by Simple Clause Learning over Theories. In: Henglein, F., Shoham, S., Vizel, Y. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2021. Lecture Notes in Computer Science(), vol 12597. Springer, Cham. https://doi.org/10.1007/978-3-030-67067-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-67067-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67066-5
Online ISBN: 978-3-030-67067-2
eBook Packages: Computer ScienceComputer Science (R0)