Skip to main content

A Reduction Theorem for Randomized Distributed Algorithms Under Weak Adversaries

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 12597)

Abstract

Weak adversaries are a way to model the uncertainty due to asynchrony in randomized distributed algorithms. They are a standard notion in correctness proofs for distributed algorithms, and express the property that the adversary (scheduler), which has to decide which messages to deliver to which process, has no means of inferring the outcome of random choices, and the content of the messages.In this paper, we introduce a model for randomized distributed algorithms that allows us to formalize the notion of weak adversaries. It applies to randomized distributed algorithms that proceed in rounds and are tolerant to process failures. For this wide class of algorithms, we prove that for verification purposes, the class of weak adversaries can be restricted to simple ones, so-called round-rigid adversaries, that keep the processes tightly synchronized. As recently a verification method for round-rigid adversaries has been introduced, our new reduction theorem paves the way to the parameterized verification of randomized distributed algorithms under the more realistic weak adversaries.

Keywords

  • Communication closure
  • Reduction
  • Distributed algorithms
  • Randomized consensus
  • Weak adversaries
  • Parameterized verification

This project has received funding from Interchain Foundation (Switzerland), and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 787367 (PaVeS).

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-67067-2_11
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-67067-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.

References

  1. Aguilera, M., Toueg, S.: The correctness proof of Ben-Or’s randomized consensus algorithm. Distrib. Comput. 25(5), 371–381 (2012)

    MATH  CrossRef  Google Scholar 

  2. Aspnes, J.: Randomized protocols for asynchronous consensus. Distrib. Comput. 16(2–3), 165–175 (2003)

    MATH  CrossRef  Google Scholar 

  3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  4. Ben-Or, M.: Another advantage of free choice: completely asynchronous agreement protocols (extended abstract). In: PODC, pp. 27–30 (1983)

    Google Scholar 

  5. Bertrand, N., Konnov, I., Lazic, M., Widder, J.: Verification of randomized consensus algorithms under round-rigid adversaries. In: CONCUR. LIPIcs, vol. 140, pp. 33:1–33:15 (2019)

    Google Scholar 

  6. Bouajjani, A., Enea, C., Ji, K., Qadeer, S.: On the completeness of verifying message passing programs under bounded asynchrony. In: CAV, pp. 372–391 (2018)

    Google Scholar 

  7. Bracha, G.: Asynchronous Byzantine agreement protocols. Inf. Comput. 75(2), 130–143 (1987)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Chaouch-Saad, M., Charron-Bost, B., Merz, S.: A reduction theorem for the verification of round-based distributed algorithms. In: Bournez, O., Potapov, I. (eds.) RP 2009. LNCS, vol. 5797, pp. 93–106. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04420-5_10

    CrossRef  Google Scholar 

  9. Damian, A., Drăgoi, C., Militaru, A., Widder, J.: Communication-closed asynchronous protocols. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 344–363. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25543-5_20

    CrossRef  Google Scholar 

  10. Elrad, T., Francez, N.: Decomposition of distributed programs into communication-closed layers. Sci. Comput. Program. 2(3), 155–173 (1982)

    MATH  CrossRef  Google Scholar 

  11. Gleissenthall, K., Gökhan Kici, R., Bakst, A., Stefan, D., Jhala, R.: Pretend synchrony. In: POPL, pp. 59:1–59:30 (2019)

    Google Scholar 

  12. Konnov, I., Lazic, M., Veith, H., Widder, J.: Para\(^2\): Parameterized path reduction, acceleration, and SMT for reachability in threshold-guarded distributed algorithms. Formal Methods Syst. Des. 51(2), 270–307 (2017)

    MATH  Google Scholar 

  13. Konnov, I., Lazić, M., Veith, H., Widder, J.: A short counterexample property for safety and liveness verification of fault-tolerant distributed algorithms. In: POPL, pp. 719–734 (2017)

    Google Scholar 

  14. Konnov, I., Widder, J.: ByMC: Byzantine model checker. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11246, pp. 327–342. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03424-5_22

    CrossRef  Google Scholar 

  15. Kragl, B., Qadeer, S., Henzinger, T.A.: Synchronizing the asynchronous. In: CONCUR. LIPIcs, vol. 118, pp. 21:1–21:17 (2018)

    Google Scholar 

  16. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Commun. ACM 18(12), 717–721 (1975)

    MathSciNet  MATH  CrossRef  Google Scholar 

  17. Mostéfaoui, A., Moumen, H., Raynal, M.: Randomized k-set agreement in crash-prone and Byzantine asynchronous systems. Theoretical Comput. Sci. 709, 80–97 (2018)

    MathSciNet  MATH  CrossRef  Google Scholar 

  18. Song, Y.J., van Renesse, R.: Bosco: one-step Byzantine asynchronous consensus. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 438–450. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87779-0_30

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijana Lazić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Bertrand, N., Lazić, M., Widder, J. (2021). A Reduction Theorem for Randomized Distributed Algorithms Under Weak Adversaries. In: Henglein, F., Shoham, S., Vizel, Y. (eds) Verification, Model Checking, and Abstract Interpretation. VMCAI 2021. Lecture Notes in Computer Science(), vol 12597. Springer, Cham. https://doi.org/10.1007/978-3-030-67067-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67067-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67066-5

  • Online ISBN: 978-3-030-67067-2

  • eBook Packages: Computer ScienceComputer Science (R0)