Skip to main content

Predicting and Managing Glycemia Levels Using Advanced Time Series Forecasting Methods

  • Chapter
  • First Online:
Intelligent Healthcare

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

  • 735 Accesses

Abstract

About 1 in 11 people around the world have some kind of diabetes, which is one of the leading causes of death. The two major types of diabetes which are prominent are type 1 and type 2 diabetes, where about 90% of the total cases are related to type 2. Fortunately, people with diabetes can lead long and healthy lives when their diabetes is diagnosed early, well managed, and self-monitored. Self-monitoring data can help people manage their diabetes and prevent hyperglycemic (high glucose levels) and hypoglycemic (low glucose levels) conditions. It is important to note that glucose-level fluctuations vary from individual to individual based on their current condition and other biological factors. In this research, we propose a methodology to manage diabetes using data from continuous glucose monitoring (CGM) devices and predicting glucose levels after a certain activity like intake of meals, intensive workouts, sleep, etc. takes place. The methodology comprises (1) analysis of ARIMAX and FbProphet time series forecasting techniques to predict future glycemic levels on the Nightscout dataset and (2) sheds some light over the interpretability of other parameters such as carbohydrates and insulin. The experimental results show that the FbProphet model outperforms the ARIMAX model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Oviedo, J. Vehí, R. Calm, J. Armengol, A review of personalized blood glucose prediction strategies for T1DM patients. Intl. J. Num.Methods Biomed. Eng. 33(6) (2017)

    Google Scholar 

  2. S.R. Chandran, R.A. Vigersky, A. Thomas, L.L. Lim, J. Ratnasingam, A. Tan, D.S.L. Gardner, Role of Composite Glycemic Indices: A Comparison of the Comprehensive Glucose Pentagon Across Diabetes Types and HbA1c Levels. Diabetes Technology & Therapeutics 22(2) (2020)

    Google Scholar 

  3. WHO Diabetes (2020, June). Retrieved from https://www.who.int/news-room/fact-sheets/detail/diabetes

  4. IDF Diabetes Atlas (2019). Retrieved from https://diabetesatlas.org/en/sections/worldwide-toll-of-diabetes.html

  5. S.A. Kaveeshwar, J. Cornwall, The current state of diabetes mellitus in India. Australasian. Med. J. 7(1), 45–48 (2014)

    Article  Google Scholar 

  6. K. Plis, R. Bunescu, C. Marling, J. Shubrook, F. Schwartz, A Machine Learning Approach to Predicting Blood Glucose Levels for Diabetes Management. AAAI Workshops, North America. (June 2014)

    Google Scholar 

  7. J. Liszka-Hackzell, Prediction of blood glucose levels in diabetic patients using a hybrid AI technique. Comput. Biomed. Res. 32(2), 132–144 (1999)

    Article  Google Scholar 

  8. I. Rodríguez-Rodríguez, J.-V. Rodríguez, A. González-Vidal, M.-Á. Zamora, Feature selection for blood glucose level prediction in Type 1 diabetes mellitus by using the sequential input selection algorithm (Sisal). Symmetry 11(9), 1164–1175 (2019)

    Article  Google Scholar 

  9. C. Pérez-Gandía, A. Facchinetti, G. Sparacino, C. Cobelli, E.J. Gómez, M. Rigla, Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabet. Technol. Therapeut. 12(1), 81–90 (2010)

    Article  Google Scholar 

  10. S.M. Pappada, B.D. Cameron, P.M. Rosman, Development of a neural network for prediction of glucose concentration in Type 1 diabetes patients. J. Diabet. Sci. Technol. 2(5), 792–801 (2008)

    Article  Google Scholar 

  11. A. Hayeri, Predicting Future Glucose Fluctuations Using Machine Learning and Wearable Sensor Data. Diabetes 67(Suppl 1), 738-P (2018)

    Article  Google Scholar 

  12. F. Bagherzadeh-Khiabani, A. Ramezankhani, F. Azizi, F. Hadaegh, E.W. Steyerberg, D. Khalili, A tutorial on variable selection for clinical prediction models: feature selection methods in data mining could improve the results. J. Clin. Epidemiol. 71, 76–85 (2016)

    Article  Google Scholar 

  13. M.W. Aslam, Z. Zhu, A.K. Nandi, Feature generation using genetic programming with comparative partner selection for diabetes classification. Expert Syst. Appl. 40(13), 5402–5412 (2013)

    Article  Google Scholar 

  14. S. Habibi, M. Ahmadi, S. Alizadeh, Type 2 diabetes mellitus screening and risk factors using decision tree: results of data mining. Global J. Health Sci. 75(5), 304–310 (2015)

    Google Scholar 

  15. A. Ramezankhani, O. Pournik, J. Shahrabi, F. Azizi, F. Hadaegh, D. Khalili, The impact of oversampling with SMOTE on the performance of 3 classifiers in prediction of Type 2 diabetes. Med. Decis. Mak. 36(1), 137–144 (2016)

    Article  Google Scholar 

  16. L.M. Albers Dj, B. Gluckman, H. Ginsberg, G. Hripcsak, Personalized glucose forecasting for Type 2 diabetes using data assimilation. Plos Computat. Biolog. 13(4), 1–10 (2017)

    Google Scholar 

  17. D.Y. Faruqui Sha, R. Meka, A. Alaeddini, C. Li, S. Shirinkam, J. Wang, Development of a deep learning model for dynamic forecasting of blood glucose level for Type 2 diabetes mellitus: secondary analysis of a randomized controlled trial. JMIR mHealth uHealth 7(11), e14452 (2019)

    Article  Google Scholar 

  18. I. Contreras, S. Oviedo, M. Vettoretti, R. Visentin, J. Vehí, Personalized blood glucose prediction: a hybrid approach using grammatical evolution and physiological models. Plos One 12(11), e0187754 (2017)

    Article  Google Scholar 

  19. J. Martinsson, A. Schliep, B. Eliasson, Blood glucose prediction with variance estimation using recurrent neural network. J. Healthcare Inform. Res 4, 1–18 (2020)

    Article  Google Scholar 

  20. H.N. Mhaskar, S.V. Pereverzyev, M.D. Van Der Walt, A Deep Learning Approach to Diabetic Blood Glucose Prediction. Frontiers in Applied Mathematics and Statistics (2017). https://doi.org/10.3389/fams.2017.00014

  21. Q. Liu, X. Liu, B. Jiang, Y.W. And, Forecasting incidence of hemorrhagic fever with renal syndrome in China using ARIMA model. BMC Infect. Dis. Article number: 218 (2011)

    Google Scholar 

  22. E. Dan, Modelling and Forecasting Malaria Mortality Rate using SARIMA Models (A Case Study of Aboh Mbaise General Hospital, Imo State Nigeria). Science Journal of Applied Mathematics and Statistics. 2, 31. (2014). 10.11648/j.sjams.20140201.15

    Google Scholar 

  23. Pan, Y., Zhang, M., Chen, Z., Zhou, M., Zhang, Z., An ARIMA based model for forecasting the patient number of epidemic disease. International Conference on Services Systems and Services Management, ICSSSM (2016), p. 78–81

    Google Scholar 

  24. A. Domenico Benvenuto, M. Giovanetti, L. Vassallo, S. Angeletti, M. Ciccozzi, Application of the ARIMA model on the COVID2019 epidemic dataset. Data Brief 29, 2352–3409 (2020)

    Google Scholar 

  25. F. Tak-chung, A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)

    Article  Google Scholar 

  26. J.J. Van Wijk, E.R. Van Selow, Cluster and calendar based visualization of time series data trend, cycle and seasons. Proc. 1999 IEEE Symp. Inform. Visual., 1–6 (1999)

    Google Scholar 

  27. D. Kwiatkowski, P.C.B. Phillips, P. Schmidt, Y. Shin, Testing the null hypothesis of stationarity against the alternative of a unit root: How sure are we that economic time series have a unit root. J. Econom. 54(3), 159–178 (1992)

    Article  Google Scholar 

  28. I. Rodríguez-Rodríguez, I. Chatzigiannakis, J.V. Rodríguez, M. Maranghi, M. Gentili, Z.-I. Má, Utility of big data in predicting short-term blood glucose levels in Type 1 diabetes mellitus through machine learning techniques. Sensors (Basel) 19(20), 4482 (2019)

    Article  Google Scholar 

  29. M. Frandes, B. Timar, R. Timar, Chaotic time series prediction for glucose dynamics in Type 1 diabetes mellitus using regime-switching models. Scientific Reports 7, 6232 (2017, July 24)

    Article  Google Scholar 

  30. M. Villani, A. Earnest, N. Nanayakkara, K. Smith, B. de Courten, S. Zoungas, Time series modelling to forecast prehospital EMS demand for diabetic emergencies. BMC Health Ser. Res. 17(332), 1–9 (2017)

    Google Scholar 

  31. J.B. Albu, N. Sohler, R. Li, X. Li, E. Young, E.W. Gregg, D. Ross-Degnan, An interrupted time series analysis to determine the effect of an electronic health record-based intervention on appropriate screening for Type 2 diabetes in urban primary care clinics in New York City. Diabetes Care 40, 1058–1064 (2017)

    Article  Google Scholar 

  32. J. Yang, L. Li, Y. Shi, X. Xie, An ARIMA model with adaptive orders for predicting blood glucose concentrations and hypoglycemia. IEEE J. Biomed. Health Inform. 23(3), 1251–1260 (2018)

    Article  Google Scholar 

  33. Nightscout Diabetes Dataset (2018). Retrieved from https://github.com/nightscout

  34. G.E.P. Box, G.M. Jenkins, Time Series Analysis, Forecasting and Control (Holden-Day, San Francisco, 1976)

    MATH  Google Scholar 

  35. G.E.P. Box, G.M. Jenkins, G.C. Reinsel, Time Series Analysis Forecasting and Control, 4th edn. (Wiley, Hoboken, 2011)

    MATH  Google Scholar 

  36. S.J. Taylor, B. Letham, Forecasting at scale. Am. Statistician 72(1), 37–45 (2018)

    Article  MathSciNet  Google Scholar 

  37. B.G. Tzovaras, M. Angrist, K. Arvai, M. Dulaney, V. Estrada-Galiñanes, B. Gunderson, T. Head, D. Lewis, O. Nov, O. Shaer, Open humans: a platform for participant-centered research and personal data exploration. GigaScience 8(6) (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Malhotra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Malhotra, S., Chhikara, R. (2021). Predicting and Managing Glycemia Levels Using Advanced Time Series Forecasting Methods. In: Bhatia, S., Dubey, A.K., Chhikara, R., Chaudhary, P., Kumar, A. (eds) Intelligent Healthcare. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-67051-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67051-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67050-4

  • Online ISBN: 978-3-030-67051-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics