Skip to main content

Inverters Operating in Power System in Weak Grids

  • Chapter
  • First Online:
Phasors for Measurement and Control

Part of the book series: Power Systems ((POWSYS))

  • 231 Accesses

Abstract

When connecting inverters to a weak grid, one significant concern is the interaction between the phase locked loops of each inverter and thus with system stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.A.A. Radwan, Y.A.I. Mohamed, Power synchronization control for grid-connected current-source inverter-based photovoltaic systems. IEEE Trans. Energy Convers. 31, 1023–1036 (2016)

    Article  Google Scholar 

  2. L. Poh Chiang, D.G. Holmes, Analysis of multiloop control strategies for LC/CL/LCL-filtered voltage-source and current-source inverters. IEEE Trans. Ind. Appl. 41, 644–654 (2005)

    Google Scholar 

  3. X. Chen, Y. Zhang, S. Wang, J. Chen, C. Gong, Impedance-phased dynamic control method for grid-connected inverters in a weak grid. IEEE Trans. Power Electron. 32, 274–283 (2017)

    Article  Google Scholar 

  4. B.D.O. Anderson, J.B. Moore, Optimal Control Linear Quadratic Methods (Dover Publications, 2014)

    Google Scholar 

  5. Q. Hu, L. Fu, F. Ma, F. Ji, Large signal synchronizing instability of PLL-based VSC connected to weak AC grid. IEEE Trans. Power Syst. 34, 3220–3229 (2019)

    Article  Google Scholar 

  6. Z. Kemin, R. Zhang, W. Wei, On the design of unknown input observers and fault detection filters, in 2006 6th World Congress on Intelligent Control and Automation, 2006, pp. 5638–5642

    Google Scholar 

  7. M. Ikeda, D. Siljak, Decentralized stabilization of linear time-varying systems. IEEE Trans. Autom. Control 25, 106–107 (1980)

    Article  MathSciNet  Google Scholar 

  8. D.D. Siljak, Stability of large-scale systems under structural perturbations. IEEE Trans. Syst. Man Cybern. SMC-2, 657–663 (1972)

    Google Scholar 

  9. P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1994)

    Google Scholar 

  10. A. Pai, Energy Function Analysis for Power System Stability (Springer, 1989)

    Google Scholar 

  11. A. Vahidnia, G. Ledwich, E. Palmer, A. Ghosh, Wide-area control through aggregation of power systems. IET Gener. Transm. Distrib. 9, 1292–1300 (2015)

    Article  Google Scholar 

  12. A. Vahidnia, G. Ledwich, E.W. Palmer, Transient stability improvement through wide-area controlled SVCs. IEEE Trans. Power Syst. 31, 3082–3089 (2016)

    Article  Google Scholar 

  13. A. Vahidnia, G. Ledwich, Y. Mishra, Correction factors for dynamic state estimation of aggregated generators, in 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 1–5

    Google Scholar 

  14. R. Goldoost-Soloot, Y. Mishra, G. Ledwich, Wide-area damping control for inter-area oscillations using inverse filtering technique. IET Gener. Transm. Distrib. 9, 1534–1543 (2015)

    Article  Google Scholar 

  15. E.W. Palmer, G. Ledwich, Optimal placement of angle transducers in power systems. IEEE Trans. Power Syst. 11, 788–793 (1996)

    Google Scholar 

  16. E. Vlahakis, L. Dritsas, G. Halikias, Distributed LQR design for a class of large-scale multi-area power systems. Energies 12, 2664 (28 pp.)

    Google Scholar 

  17. F. Perez, G. Damm, P. Ribeiro, F. Lamnabhi-Lagarrigue, L. Galai-Dol, A nonlinear distributed control strategy for a DC microgrid using hybrid energy storage for voltage stability, in 2019 IEEE 58th Conference on Decision and Control (CDC), 11–13 Dec 2019, Piscataway, NJ, USA, 2019, pp. 5168–5173

    Google Scholar 

  18. B. Raouf, A. Akbarimajd, A. Dejamkhooy, S. Seyed Shenava, Robust distributed control of reactive power in a hybrid wind-diesel power system with STATCOM. Int. Trans. Electr. Energy Syst. 29, e2780 (18 pp.)

    Google Scholar 

  19. W. Lei, W. Chuan, W. Kun, W. He, L. Zhaoyu, Y. Wenwu, Distributed load frequency control for multi-area power systems, in 2019 Tenth International Conference on Intelligent Control and Information Processing (ICICIP), 14–19 Dec 2019, Piscataway, NJ, USA, 2019, pp. 100–105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard Ledwich .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ledwich, G., Vahidnia, A. (2021). Inverters Operating in Power System in Weak Grids. In: Phasors for Measurement and Control. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-67040-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67040-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67039-9

  • Online ISBN: 978-3-030-67040-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics