Skip to main content

Globe Artichoke (Cynara cardunculus var. scolymus L.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

Globe artichoke (Cynara cardunculus var. scolymus L.; Asteraceae) is a diploid (2n = 2× = 34), perennial, mostly cross-pollinated species native to the Mediterranean Basin. It represents an important component of the agricultural economy of southern Europe, and is grown for its large immature inflorescences, called capitula or heads. Artichokes have recognized nutraceutical properties for human health. Its commercial production is based mainly on perennial vegetatively-propagated clones. Recently its cultivation has been shifted toward seed-propagation of hybrids. Italy holds the richest biodiversity of cultivated Cynara, which has resulted in the culture of varieties and landraces adapted to specific local climatic conditions and markets. Cultivar-groups comprise early and late types, but also spiny, violet, Romanesco and Catanese types. Traditionally selections have been made within a given clone, removing off-types. Due to its heterozygous nature, a great variability is seen after crossing or selfings, promoting the selection of new cloned varieties. Seed-propagated hybrids are feasible upon the use of genic male sterility. In the past 20 years new technologies have been applied to broaden the knowledge of the molecular basis inherent, from the first genetic linkage map, the identifications of QTL for yield and related traits, up to the recent whole-genome sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbate V, Noto G (1981) Variabilità ambientale e genotipica in popolazioni siciliane di Cynara scolymus ed isolamento di nuovi cloni di violetto di sicilia. In: Atti III Congr Int di Studi sul Carciofo, Bari. Industria Grafica Laterza, Bari, pp 843–852

    Google Scholar 

  • Acquadro A, Portis E, Lanteri S (2003) Isolation of microsatellite loci in artichoke (Cynara cardunculus L. var. scolymus). Mol Ecol Notes 3:37–39

    Article  CAS  Google Scholar 

  • Acquadro A, Portis E, Lee D et al (2005) Development and characterization of microsatellite markers in Cynara cardunculus L. Genome 48:217–225

    Article  CAS  PubMed  Google Scholar 

  • Acquadro A, Lanteri S, Scaglione D et al (2009) Genetic mapping and annotation of genomic microsatellites isolated from globe artichoke. Theor Appl Genet 118(8):1573–1587

    Article  CAS  PubMed  Google Scholar 

  • Allaby R (2019) Clonal crops show structural variation role in domestication. Nat Plants 5:915–916

    Article  PubMed  Google Scholar 

  • Ancora G, Belli-Donini ML, Cuozzo L (1981) Globe artichoke plants obtained from shoot apices through rapid in vitro micropropagation. Sci Hortic 14(13):207–221

    Article  CAS  Google Scholar 

  • Basnizki J (1985) Cynara scolymus. In: Halevy AH (ed) Handbook of flowering, vol 2. CRC Press, Boca Raton, pp 391–399

    Google Scholar 

  • Basnizki J, Zohary D (1987) A seed planted cultivar of globe artichoke. HortSci 22:678–679

    Article  Google Scholar 

  • Basnizki J, Zohary D (1994) Breeding of seed planted artichoke. Plant Breed Rev 12:253–269

    Google Scholar 

  • Basnizki Y, Zohary D (1998) Hybrid seeds of globe artichoke for seed planting and method of producing same. European Patent Application, Application Number 98106908.1, Bulletin 1998/43

    Google Scholar 

  • Bedini L, Lucchesini M, Bertozzi F et al (2012) Plant tissue cultures from four Tuscan globe artichoke cultivars. Cent Eur J Biol 7(4):680–689

    CAS  Google Scholar 

  • Bekheet SA (2007) In vitro preservation of globe artichoke germplasm. Plant Tissue Cult Biotechnol 17(1):1–9

    Article  Google Scholar 

  • Bekheet S, Sota V (2019) Biodiversity and medicinal uses of globe artichoke (Cynara scolymus L.). J Biodivers Conserv Bioresour Manag 5(1):39. https://doi.org/10.3329/jbcbm.v5i1.42184

    Article  Google Scholar 

  • Bianco VV (1990) Carciofo (Cynara scolymus L.). In: Bianco VV, Pimpini F (eds) Orticoltura. Patron, Bologna, pp 209–251

    Google Scholar 

  • Big Heart Seed Co (2019) http://bigheartseed.com/Big_Heart_Seed/Seed.html. Accessed 15 Sep 2019

  • Blanca G, Sánchez-Carrión R (2014) A new hybrid in the genus Cynara L. (Asteraceae): C. x gaditana Blanca & Sánchez Carrión, nothosp. nov. Acta Bot Malacitana 39:304–307

    Article  Google Scholar 

  • Calabrese N (2019) Present situation and perspective of the globe artichoke in the world. X International Artichoke Symposium, Orihuela, Spain. Book of abstracts

    Google Scholar 

  • Casadevall R, Martin EA, Cravero VP et al (2011) Simple sequence repeat (SSR) vs. sequence-related amplified polymorphism (SRAP) markers for Cynara cardunculus characterization. Span J Agric Res 9(2):453–459

    Article  Google Scholar 

  • Ceccarelli N, Curadi M, Picciarelli P et al (2010) Globe artichoke as a functional food. Mediterr J Nutr Metab 3:197–201

    Article  Google Scholar 

  • Cerruti E, Comino C, Acquadro A et al (2019) Analysis of DNA methylation patterns associated with in vitro propagated globe artichoke plants using an EpiRADseq-Based approach. Genes 10:263. https://doi.org/10.3390/genes10040263

    Article  CAS  PubMed Central  Google Scholar 

  • Comino C, Lanteri S, Portis E et al (2007) Isolation and functional characterization of a cDNA coding a hydroxycinnamoyltransferase involved in phenylpropanoid biosynthesis in Cynara cardunculus L. BMC Plant Biol 7:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Comino C, Hehn A, Moglia A et al (2009) The isolation and mapping of a novel hydroxycinnamoyl transferase in the globe artichoke chlorogenic acid pathway. BMC Plant Biol 9:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cravero VP, López-Anido FS, Asprelli PD, Cointry LE (2004) Diallel analysis for traits of economic importance in globe artichoke (Cynara scolymus). N Z J Crop Hortic Sci 32:159–165

    Article  Google Scholar 

  • Cravero V, Picardi L, Cointry E (2005) An approach for understanding the heredity of two quality traits (head color and tightness) in globe artichoke (Cynara scolymus L.). Genet Mol Biol 28:431–434

    Article  Google Scholar 

  • Cravero V, Martin E, Cointry E (2007) Genetic diversity in Cynara cardunculus determined by sequence-related amplified polymorphism markers. J Am Soc Hortic Sci 132(2):208–212

    Article  CAS  Google Scholar 

  • Cravero V, Martin E, Crippa I et al (2012) Fresh biomass production and partitioning of aboveground growth in the three botanical varieties of Cynara cardunculus L. Ind Crop Prod 37:253–258

    Article  Google Scholar 

  • Cravero V, Crippa I, Martin E, Cointry E (2019) Comparison of different methodologies in order to perform a representative Cynara cardunculus L. core collection. Agriscientia 36:25–38

    Google Scholar 

  • Deidda M (1967) Contributo al miglioramento genetico del carciofo. In: Atti I Congr Int di Studi sul Carciofo, Bari. Ediz Minerva Medica, Torino, pp 157–174

    Google Scholar 

  • Dellacecca V (1990) Cardo (Cynara cardunculus L.). In: Bianco VV, Pimpini F (eds) Orticoltura. Patron, Bologna, pp 252–258

    Google Scholar 

  • Dellacecca V, Magnifico V, Marzi V et al (1976) Contributo alla conoscenza delle varieta’ di carciofo coltivate nel mondo. In: Atti II Congresso Internazionale di Studi sul Carciofo. Minerva Medica, Turin, pp 119–316

    Google Scholar 

  • Di Venere D, Linsalata V, Calabrese N et al (2005) Biochemical characterization of wild and cultivated cardoon accessions. Acta Hortic 681:523–528

    Article  Google Scholar 

  • Elia A, Miccolis V (1996) Relationship among 104 artichoke (Cynara scolymus L.) accessions using cluster analysis. Adv Hortic Sci 10:158–162

    Google Scholar 

  • Engelmann F (2010) Use of biotechnologies for conserving plant diversity. Acta Hortic 812:63–82

    Google Scholar 

  • Foti S, Mauromicale G, Raccuia S et al (1999) Possible alternative utilization of Cynara spp. I. Biomass, grain yield and chemical composition of grain. Ind Crop Prod 10:219–228

    Article  CAS  Google Scholar 

  • Foury C (1967) Étude de la biologie florale de l’artichaut (Cynara scolymus L.). Application à la sélection 1 partie. Données sur la biologie florale. Ann Amélior Plantes 17(4):357–373

    Google Scholar 

  • Foury C (1969) Étude de la biologie florale de l’artichaut (Cynara scolymus L.) application à la selection. 2 partie. Étude des descendances obtenues en fécondation contrôlée. Ann Amélior Plantes 19(1):23–52

    Google Scholar 

  • Foury C (1979) Quelques aspects pratiques de la sélection généalogique de l’Artichaut I.: Présentation, création de lignées. Ann Amélior Plantes 29(4):383–418

    Google Scholar 

  • Foury C (1989) Ressources génétiques et diversification de l’artichaut (Cynara scolymus L.). Acta Hortic 242:155–166

    Google Scholar 

  • García SM, Rotondo R, López-Anido F et al (2016) Effect of gibberellic acid application on the content of active compounds in leaves and bracts of globe artichoke (Cynara cardunculus var. scolymus L.). Acta Hortic 1147:103–112

    Article  Google Scholar 

  • Gebhardt R (1997) Antioxidative and protective properties of extracts from leaves of artichoke (Cynara scolymus L.) against hydroperoxide induced oxidative stress in cultured rat hepatocytes. Toxicol Appl Pharmacol 144:279–286

    Article  CAS  PubMed  Google Scholar 

  • Gominho J, Curt MD, Lourenço A et al (2018) Cynara cardunculus L. as a biomass and multi-purpose crop: a review of 30 years of research. Biomass Bioenergy 109:257–275

    Article  CAS  Google Scholar 

  • JackintheBox (2018) Countries by artichoke production in 2016. https://commons.wikimedia.org/wiki/File:Countries_by_artichoke_production_in_2016.png. Accessed 10 Sep 2019

  • Lanteri S, Di Leo I, Ledda L et al (2001) RAPD variation within and among populations of globe artichoke cultivar Spinoso Sardo. Plant Breed 120:243–246

    Article  CAS  Google Scholar 

  • Lanteri S, Saba E, Cadinu M et al (2004) Amplified fragment length polymorphism for genetic diversity assessment in globe artichoke. Theor Appl Genet 108:1534–1544

    Article  CAS  PubMed  Google Scholar 

  • Lanteri S, Acquadro A, Comino C et al (2006) A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, SSAP, MAFLP and microsatellite markers. Theor Appl Genet 112:1532–1542

    Article  CAS  PubMed  Google Scholar 

  • López-Anido FS, Firpo IT, García SM, Cointry EL (1998) Estimation of genetic parameters for yield traits in globe artichoke (Cynara scolymus L.). Euphytica 103:61–66

    Article  Google Scholar 

  • López-Anido FS, Cointry EL, Cravero VP (2005) New Argentinian clones of artichoke. Acta Hortic 681:329–332

    Article  Google Scholar 

  • López-Anido FS, Martin EA, García SM et al (2016) Successful transferring of male sterility from globe artichoke into cultivated cardoon. Acta Hortic 1147:163–166

    Article  Google Scholar 

  • Martin E, Cravero V, Esposito M et al (2008) Identification of markers linked to agronomic traits in globe artichoke. Aust J Crop Sci 1(2):43–46

    CAS  Google Scholar 

  • Martin E, Cravero V, Liberatti D et al (2010) Response of productive and morphovegetative traits of globe artichoke (Cynara cardunculus var. scolymus) to mass selection and estimation of their heritability. Chilean J Agric Res 70(2):199–203

    Article  Google Scholar 

  • Martin E, Cravero V, Portis E et al (2013) New genetic maps for globe artichoke and wild cardoon and their alignment with an SSR based consensus map. Mol Breed 32(1):177–187

    Article  CAS  Google Scholar 

  • Martin EA, Cravero VP, López-Anido FS et al (2016a) QTLs detection and mapping for yield-related traits in globe artichoke. Sci Hortic 202:156–164

    Article  Google Scholar 

  • Martin EA, Cravero VP, Cointry EL (2016b) Quantitative trait loci (QTLs) related to biomass production in Cynara cardunculus L. Acta Hortic 1147:189–196

    Article  Google Scholar 

  • Martin E, Rua F, Almiron P et al (2018) Evaluación de compuestos polifenólicos con potencial uso nutracéutico en Cynara cardunculus L. XX Congress and XXXVIII Annual Meeting Rosario Biology Society. Book of Abstracts

    Google Scholar 

  • Menin B, Comino C, Moglia A et al (2010) Identification and mapping genes related to caffeoylquinic acid synthesis in Cynara cardunculus L. Plant Sci 179:338–347

    Article  CAS  Google Scholar 

  • Menin B, Comino C, Portis E et al (2012) Genetic mapping characterization of the globe artichoke (+)-germacrene A synthase gene, encoding the first dedicated enzyme for biosyntesis of the bitter sesquiterpene lactone cynaropicrin. Plant Sci 190:1–8

    Article  CAS  PubMed  Google Scholar 

  • Miller T (1975) New artichoke clones. N Z J Agric 131(1):33

    Google Scholar 

  • Moglia A, Lanteri S, Comino C et al (2008) Stress-induced biosynthesis of dicaffeoylquinic acids in globe artichoke. J Agric Food Chem 5:8641–8649

    Article  CAS  Google Scholar 

  • Moglia A, Comino C, Portis E et al (2009) Isolation and mapping of a C30H gene (CYP98A49) from globe artichoke, and its expression upon UV-C stress. Plant Cell Rep 28:963–974

    Article  CAS  PubMed  Google Scholar 

  • Morone-Fortunato I, Ruta C, Castrignanò A et al (2005) The effect of mycorrhizal symbiosis on the development of micropropagated artichokes. Sci Hortic 106(4):472–483

    Article  CAS  Google Scholar 

  • Nunhems (2019) http://www.nunhems.es/www/nunhemsinternet.nsf/id/ES_ES_Artichoke. Accessed 5 Sep 2019

  • Pagnotta MA, Noorani A (2014) Genetic diversity assessment in European Cynara collections. In: Genomics of plant genetic resources. Springer, Dordrecht, pp 559–584

    Chapter  Google Scholar 

  • Pagnotta MA, Cardarelli MT, Rey NA et al (2004) Assessment of genetic variation in artichoke of ‘Romanesco’ type by molecular markers. Acta Hortic 660:99–104

    Article  CAS  Google Scholar 

  • Pagnotta MA, Fernández JA, Sonnante G, Egea-Gilabert C (2017) Genetic diversity and accession structure in European Cynara cardunculus collections. PLoS One 12(6):e0178770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pandino G, Lombardo S, Mauromicale G et al (2011) Phenolic acids and flavonoids in leaf stem of cultivated and wild Cynara cardunculus L. genotypes. Food Chem 126:417–422

    Article  CAS  Google Scholar 

  • Pandino G, Lombardo S, Mauro RP et al (2012) Variation in polyphenol profile and head morphology among clones of globe artichoke selected from a landrace. Sci Hortic 138:259–265

    Article  CAS  Google Scholar 

  • Pandino G, Lombardo S, Moglia A et al (2015) Leaf polyphenol profile and SSR-based fingerprinting of new segregant Cynara cardunculus genotypes. Front Plant Sci 5:800

    Article  PubMed  PubMed Central  Google Scholar 

  • Pécaut P (1983) Amélioration des variétés d’artichaut: variétés à multiplication végétative, variétés à multiplication par semences clones sans virus tissus de multiplication in vitro. In: Procès-verbal de la Séance de 12 janvier. Académie D’agriculture de France, pp 69–78

    Google Scholar 

  • Pécaut P (1993) Globe Artichoke Cynara scolymus L. In: Kalloo G, Bergh BO (eds) Genetic improvements of vegetable crops. Pergamon, Oxford, pp 737–746

    Chapter  Google Scholar 

  • Pécaut P, Foury C (1992) L’artichaut. In: Gallais A, Bannerot H (eds) Amélioration des espèces végétales cultivées. INRA, Paris, pp 460–469

    Google Scholar 

  • Pecaut P, Martin F (1993) Variation occurring after natural and in vitro multiplication of early Mediterranean cultivars of globe artichoke (Cynara scolymus L.). Agronomie 13:909–919

    Article  Google Scholar 

  • Pécaut P, Foury C, Rico F, Martin F (1981) Bilan d’un premier cycle de selection de varietées d’artichauts à semen. In: Atti 3 Congr Int di Studi sul Carciofo. Industria Grafica Laterza, Bari, pp 615–627

    Google Scholar 

  • Pesce GR, Mauromicale G (2019) Cynara cardunculus L.: Historical and economic importance, botanical descriptions, genetic resources and traditional uses. In: Portis E, Acquadro A, Lanteri S (eds) The globe artichoke genome. Springer Nature, Switzerland, pp 1–20

    Google Scholar 

  • Porchard E, Foury C, Chambonet D (1969) Il miglioramento genetico del carciofo. In: Atti 1 Congr. Int. di Studi sul Carciofo, Bari. Ediz Minerva Medica, Torino, pp 117–143

    Google Scholar 

  • Portis E, Barchi L, Acquadro A et al (2005) Genetic diversity assessment in cultivated cardoon by AFLP (amplified fragment length polymorphism) and microsatellite markers. Plant Breed 124:299–304

    Article  CAS  Google Scholar 

  • Portis E, Mauromicale G, Mauro R et al (2009) Construction of a reference molecular linkage map of globe artichoke (Cynara cardunculus var. scolymus). Theor Appl Genet 120(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Portis E, Scaglione D, Acquadro A et al (2012) Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex. BMC Res Notes 5:252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Portis E, Mauro RP, Barchi L et al (2014) Mapping yield-associated QTL in globe artichoke. Mol Breed 34:615–630

    Article  Google Scholar 

  • Portis E, Portis F, Valente L et al (2016) A Genome-wide survey of the microsatellite content of the globe artichoke genome and the development of a web-based database. PLoS One 11(9):e0162841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Portis E, Acquadro A, Tirone M et al (2018) Mapping the genomic regions encoding biomass-related traits in Cynara cardunculus L. Mol Breed 38:64

    Article  CAS  Google Scholar 

  • Principe JA (1984) Male-sterility in artichoke. HortSci 19:864–865

    Article  Google Scholar 

  • Raccuia SA, Melilli MG (2004) Cynara cardunculus L., a potential source of inulin in the Mediterranean environment: screening of genetic variability. Aust J Agric Res 55:693–698

    Article  CAS  Google Scholar 

  • Raccuia SA, Melilli MG (2010) Seasonal dynamics of biomass, inulin, and water-soluble sugars in roots of Cynara cardunculus L. Field Crop Res 116:147–153

    Article  Google Scholar 

  • Radiuk (2013) https://commons.wikimedia.org/wiki/File:Carciofi_spinosi_di_Albenga. Accessed 02 Sep 2019

  • Reolon da Costa A, Grando MF, Cravero VP et al (2016a) Molecular characterization of two cycles of phenotypic recurrent selection in globe artichokes using microsatellite and SRAPs markers. Acta Hortic 1147:351–356

    Article  Google Scholar 

  • Reolon da Costa A, Grando MF, Cravero VP (2016b) Artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori): functional food and a source of health promoters compounds. Fitosociologia 10(4):375–547

    Google Scholar 

  • Robba L, Carine MA, Russell SJ, Raimondo FM (2005) The monophyly and evolution of Cynara L. (Asteraceae) sensu lato: evidence from the internal transcribed spacer region of nrDNA. Plant Syst Evol 253:53–64

    Article  CAS  Google Scholar 

  • Rotondo R, Santa Cruz P, Masin M et al (2020) Artichoke extracts with potential application in chemoprevention and inflammatory processes. Braz J Pharm Sci. in press

    Google Scholar 

  • Rottenberg A, Zohary D (1996) The wild ancestry of the cultivated artichoke. Genet Resour Crop Evol 43:53–58

    Article  Google Scholar 

  • Rottenberg A, Zohary D (2005) Wild genetic resources of cultivated artichoke. Acta Hortic 681:307–311

    Article  Google Scholar 

  • Ryder EJ, De Vos NE, Bari MA (1983) The globe artichoke (Cynara scolymus L.). HortSci 18:646–653

    Article  Google Scholar 

  • Scaglione D, Acquadro A, Portis E et al (2009) Ontology and diversity of transcript associated microsatellites mined from globe artichoke EST database. BMC Genome 10:454

    Article  CAS  Google Scholar 

  • Scaglione D, Reyes-Chin-Wo S, Acquadro A et al (2016) The genome sequence of the outbreeding globe artichoke constructed de novo incorporating a phase-aware low-pass sequencing strategy of F1 progeny. Sci Rep 6:19427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarascia-Mugnozza GT, Pacucci G (1976) Tipi de potenziale valore pratico isolati nell’ambito di un programma per il miglioramento genetico del carciofo. In: Atti 3 Congr Int di Studi sul Carciofo. Industria Grafica Laterza, Bari, pp 721–732

    Google Scholar 

  • Schrader WL, Mayberry KS (1992) ‘Imperial Star’ artichoke. HortSci 27(4):375–376

    Article  Google Scholar 

  • Sonnante G, De Paolis A, Lattanzio V et al (2002) Genetic variation in wild and cultivated artichoke revealed by RAPD markers. Genet Resour Crop Evol 49:247–252

    Article  Google Scholar 

  • Sonnante G, De Paolis A, Pignone D (2004) Relationships among artichoke cultivars and some related wild taxa based on AFLP markers. Plant Genet Res 1:125–133

    Article  Google Scholar 

  • Sonnante G, Carluccio AV, Vilatersana R, Pignone D (2007) On the origin of artichoke and cardoon from the Cynara gene pool as revealed by rDNA sequence variation. Genet Resour Crop Evol 54:483–495

    Article  CAS  Google Scholar 

  • Sonnante G, Carluccio A, De Paolis A et al (2008) Identification of artichoke SSR markers: molecular variation and patterns of diversity in genetically cohesive taxa and wild allies. Genet Resour Crop Evol 55:1029–1046

    Article  CAS  Google Scholar 

  • Sonnante G, Gatto A, Morgese A et al (2011) Genetic map of artichoke 9 wild cardoon: toward a consensus map for Cynara cardunculus. Theor Appl Genet 123(7):1215–1229

    Google Scholar 

  • Stamigna C, Micozzi F, Pandozy G, Crinò P, Saccardo F (2004) Produzione di ibridi F1 di carciofo mediante impiego di cloni maschiosterili. Italus Hortus 11(5):29–33

    Google Scholar 

  • Tesi R (1976) Primi risultati del miglioramento genetico nelle varieta toscane de Cynara cardunculus v. scolymus. In: Atti II Congr Int di Studi sul Carciofo, Bari. Ediz Minerva Medica, Torino, pp 747–763

    Google Scholar 

  • Trizek (2018) https://commons.wikimedia.org/wiki/File:Artichaut_en_coupe.jpg. Accessed 01 Sep 2019

  • Voss-Fels KP, Cooper M, Hayes BJ (2019) Accelerating crop genetic gains with genomic selection. Theor Appl Genet 132:669–686

    Article  PubMed  Google Scholar 

  • Wiklund A (1992) The genus Cynara L. (Asteraceae-Cardueae). Bot J Linn Soc 109:75–123

    Article  Google Scholar 

  • Xu J, Hua K, Lang Z (2019) Genome editing for horticultural crop improvement. Hortic Res 6:113. https://doi.org/10.1038/s41438-019-0196-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Zayas A, Martin E, Bianchi M et al (2020) Elucidating the genetic male sterility in Cynara cardunculus L. through a BSA approach. Identification of associated molecular markers. Euphytica 216:8. https://doi.org/10.1007/s10681-019-2531-1

    Article  CAS  Google Scholar 

  • Zhou Y, Minio A, Massonnet M et al (2019) The population genetics of structural variants in grapevine domestication. Nat Plants 5:965–979

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando López-Anido .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Globe Artichoke

Institute/Organization

Specialization research activities

Contact information and website

Università degli Studi della Tuscia, Tuscia

University

Genetic diversity, management

Prof. Mario-A. Pagnotta

Va S.Maria in Gradi 4

01100 Viterbo, Italy

pagnotta@unitus.it

National Agency for the New Technologies, Energy and the Environment (ENEA)

Genetics resources, genetics, in vitro culture

Paola Crinò

Lungotevere Grande Ammiraglio Thaon de Revel 76

00196 Rome, Italy

Institute of Science of Food Production – Institute of Biosciences and Bioresources – National Council of Research, (IGV-CNR)

Crop management, genetics, genetic resources

Gabriella Sonnante / Nicola Calabrese

Via Amendola 165/a

70,126 Bari, Italy

gabriella.sonnante@ibbr.cnr.it

DISAFA Plant Genetics and Breeding, University

of Torino

Genetics, breeding, marker development, sequencing

Prof. Sergio Lanteri / Alberto Acquadro

Largo P. Braccini 2, 10,095 Grugliasco, Torino, Italy

sergio.lanteri@unito.it

alberto.acquadro@unito.it

University of Catania

Crop management

Giovanni Mauromicale

Via Valdisavoia 5 95123 Catania

Italy

g.mauromicale@unict.it

Bretagne Biotechnologie Végétale (BBV)

Biotechnology

Christophe Bazinet

Pen ar Prat, 29,250 Saint Pol de Léon, France

Universidad Politécnica de Cartagena (UPCT)

Field management, stress

Prof. Juan Fernández

Plaza Cronista Isidoro Valverde

30,202 Cartagena, Spain

Juan.fernandez@upct.es

Universidad Miguel Hernández

Bioactive compounds

Dr. Daniel Valero

Department Food Technology

Ctra. Beniel KM 3.2

03312 Alicante Orihuela, Spain

daniel.valero@umh.es

Instiuto Técnico y de Géstion Agricola (ITGA)

Crop management

Juan Igniacio Macua

Avda. Serapio Huici 20–22

31,610 Villava. Spain

Groupe d’Etudes et de Contrôle des Variétés et

des Semences (GEVES)

Seeds, clonal varieties quality

Chrystelle Jouy

La Minière

78,285 Guyancourt, France

Instituto de Investigaciones en Ciencias Agrarias de

Rosario (IICAR, CONICET-UNR)

Breeding, genetics

Prof Vanina Cravero

Campo Experimental Villarino (S2125ZAA), Zavalla,

Santa Fe, Argentina

vcravero@unr.edu.ar

Big Heart Seed Company

Breeding

Nestor Rey

1280 Main Street,

Brawley, CA 92227

USA

rey@bigheartseed.com

Texas A&M AgriLife – Research and Extension Center at Uvalde

Crop management,

organic systems,

plant stress physiology

Prof. Daniel Leskovar

1619 Garner Fielf Rd.,

Uvalde, TX 78801, USA

d-leskovar@tamu.edu

1.2 Appendix II: Genetics Resources of Globe Artichoke

Cultivar

Important traits

Cultivation location

Vegetative propagated

Spinoso Sardo

Spiny capitula, early production

Sardinia, Liguria

Spinoso di Palermo

Spiny, average early

Palermo, Trapani, Agrigento

Violetto di Toscana

Violet capitula, spring production

Tuscany

Moretto

Violet capitula, spring production

Liguria

Castellammare

Green variegated capitula, spring production

Lazio

Catanese

Variagated capitula, early production

Sicily, Toscany, Puglia

Masedu

Variegated capitula, early production

Sardinia

Sakiz

Green variegated capitula, early production

Turkey

Bianco Tarantino

Green capitula, spring production

Puglia

Blanco de Tudela

Green capitula, early production

Spain, Argentina

Violeto de Provenza

Variegated capitula, early production

France, Italy, Algeria, Egypt

Precoce di Jesi

Variegated, violet capitula, spring production

Marche

Empolese

Green variegated capitula, spring production

Tuscany

Romanesco

Violet variegated, spring production

Lazio, Argentina

Camus de Bretagne

Green capitula, spring production

France

Seed-propagated

Imperial Star

Green capitula, spring production

USA

Opal

Variegated capitula, spring production, hybrid

Italy, Spain, Argentina, Chile

Madrigal

Green capitula, spring production, hybrid

Italy, Spain, Argentina, Chile

Deserto

Variegated capitula, spring production, hybrid

USA

Romolo

Variegated capitula, spring production, hybrid

USA

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

López-Anido, F., Martin, E. (2021). Globe Artichoke (Cynara cardunculus var. scolymus L.) Breeding. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66969-0_8

Download citation

Publish with us

Policies and ethics