Skip to main content

Watercress (Nasturtium officinale R. Br.) Breeding

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Vegetable Crops

Abstract

Watercress is an aquatic perennial herb belonging to the family Brassicaceae, which is commonly found in the wild in cool stream margins and ditches as well as cultivated in tanks or moist soil for its edible leaves. The most common and widespread species of the genus Nasturtium are N. officinale R. Br. and N. microphyllum Boenn. Rchb., which originated from Eurasia and North Africa and widely spread in Europe, including Britain, from Sweden and Denmark, and to North America. Watercress is consumed fresh or as an ingredient in soups or other recipes. It contains vitamins, phenolic compounds, folic acid, carotenoids, minerals, fibers, lipids, proteins, and a high level of glucosinolates. It purportedly possesses antioxidant and anti-carcinogenic properties and a possible role in the prevention of other diseases including cardiovascular, neurodegeneration and diabetes. The best site for a watercress bed is on a relatively flat area with a slight slope below a spring that supplies water. The beds should be protected from floods, which could cause severe damage to both the watercress and the beds. It is propagated by seeds and vegetative reproduction. This chapter presents watercress biodiversity and distribution, cultivation practices, conservation, traditional breeding, molecular breeding, functional genomics and genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Shehbaz IA (1988) The genera of Arabideae (Cruciferae; Brassicaceae) in the southeastern United States. J Arnold Arbor 69:85–166

    Article  Google Scholar 

  • Al-Shehbaz IA, Price RA (1998) Delimitation of the Genus Nasturtium (Brassicaceae). Novon 8:124–126

    Article  Google Scholar 

  • Al-Shehbaz IA, Rollins RC (1988) A reconsideration of Cardamine curvisiliqua and C. gambellii as species of Rorippa (Cruciferae). J Arnold Arbor 69:65–71

    Article  Google Scholar 

  • Al-Shehbaz IA, Warwick SI (1997) The generic disposition of Quidproquo confusum and Sinapis aucheri (Brassicaceae). Novon 7:219–220

    Article  Google Scholar 

  • Andrianova TV, Minter DW (2004) Septoria sisymbrii. IMI Descriptions of fungi and bacteria No. 159. CAB International, Wallingford

    Google Scholar 

  • Azarmehr N, Afshar P, Moradi M et al (2019) Hepatoprotective and antioxidant activity of watercress extract on acetaminophen-induced hepatotoxicity in rats. Heliyon 5(7):e02072

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahramikia S, Yazdanparast R (2005) Effect of hydroalcoholic extracts of Nasturtium officinale leaves on lipid profile in high-fat diet rats. J Ethnopharm 115:116–121

    Article  Google Scholar 

  • Balmer M, Blanke M (2005) Developments in high density cherries in Germany. Acta Hortic 667:273–278

    Article  Google Scholar 

  • Basu S, Thomas J, Acharya S (2007) Prospects for growth in global nutraceutical and functional food markets: a Canadian perspective. Austr J Basic Appl Sci 1:637–649

    Google Scholar 

  • Bayrami A, Ghorbani E, Rahim Pouran S et al (2019) Enriched zinc oxide nanoparticles by Nasturtium officinale leaf extract: joint ultrasound-microwave-facilitated synthesis, characterization, and implementation for diabetes control and bacterial inhibition. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2019.104613

  • Benson EE (1995) Cryopreservation of Brassica species. In: Bajaj YPS (ed) Cryopreservation of plant germplasm I. Biotechnology in agriculture and forestry, vol 32. Springer, Berlin/Heidelberg, pp 3–28

    Chapter  Google Scholar 

  • Blazevic I, Radonic A, Mastelic J et al (2010) Glucosinolates, glycosidically bound volatiles and antimicrobial activity of Aurinia sinuata (Brassicaceae). Food Chem 121:1020–1028

    Article  CAS  Google Scholar 

  • Bleasdale JKA (1964) The flowering and growth of watercress (Nasturtium officinale R. Br.). J Hortic Sci 39:277–283

    Article  Google Scholar 

  • Bleeker W, Hurka H (1997) Verbreitung und Okologie von Nasturtium × sterile (Airy Shaw) Oef. (Brassicaceae) in Mitteleuropa. Osnabruck. Naturwiss Mitt 23:57–67

    Google Scholar 

  • Bleeker W, Hurka H, Koch M (1997) Zum Voirommen und zur Morphologie von N. × sterile (Airy Shaw) Oef. In Sudwestniedersachsen und angrenzenden Gebieten. Florist Rundbr 31:1–8

    Google Scholar 

  • Bleeker W, Huthmann M, Hurka H (1999) Evolution of hybrid taxa in Nasturtium R. Br. (Brassicaceae). Folia Geobot 34:421–433

    Article  Google Scholar 

  • Borth WB, Fukuda SK, Hamasaki RT et al (2006) Detection, characterisation and transmission by macrosteles leaf hoppers of watercress yellows phytoplasma in Hawaii. Ann Appl Biol 149:357–363

    Article  CAS  Google Scholar 

  • Castellano E (1977) Productivity of Rorippa nasturtium-aquaticum (L.) Hayek (Productividad de Rorippa nasturtium-aquaticum (L.) Hayek). Universidad de los Andes, Merida

    Google Scholar 

  • Cavell BE, Alwi SSS, Donlevy A, Packham G (2011) Anti-angiogenic effects of dietary isothiocyanates: mechanisms of action and implications for human health. Biochem Pharmacol 81:327–336

    Article  CAS  PubMed  Google Scholar 

  • Choudhary N, Ahuja U, Chawla R et al (2011) Morphological and molecular variability in weedy rices of Haryana. Asian J Agric Res 5:250–259

    Google Scholar 

  • Cropper S (1987) Ecological notes and suggestions for conservation of a recently discovered site of Lepidium-hyssopifolium desv. Brassicaceae at Bolwarrah, Victoria, Australia. Biol Conserv 41:269–278

    Article  Google Scholar 

  • Cumbus IP, Robinson LW (1977) The function of root systems in mineral nutrition of watercress (Rorippa nasturtium-aquaticum (L) Hayek). Plant Soil 47:395–406

    Article  CAS  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD et al (2011) Genome wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Dreyfuss G, Vignoles P, Rondelaud D (2003) Natural infections of Omphiscola glabra (Lymnaeidae) with Fasciola hepatica in Central France. Parasitol Res 91:458–461

    Article  CAS  PubMed  Google Scholar 

  • Farsi M, Baghery A (2004) Principles of plant breeding. Jehade-Daneshgahi Press, Mashhad

    Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trend Genet 24:24–32

    Article  CAS  Google Scholar 

  • Fiorini F, Lastrucci L, Viciani L (2017) Karyological investigations on Nasturtium officinale R.Br. in Tuscany and considerations on its Italian populations in a global perspective. Caryologia 71(1):45–49

    Article  Google Scholar 

  • Franzke A, Pollman K, Bleeker W et al (1998) Molecular systematics of Cardamine and allied genera (Brassicaceae): ITS and non-coding chloroplast DNA. Folia Geobot 33:225–240

    Article  Google Scholar 

  • Gelvin SB (2009) Agrobacterium in the genomics age. Plant Physiol 150:1665–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerard LP, Celia PM (2011) Antibacterial activity of extracts of twelve common medicinal plants from the Philippines. J Med Plant Res 5:3975–3981

    Google Scholar 

  • Getahun SM, Chung FL (1999) Conversion of glucosinolates to isothiocyanates in humans after ingestion of cooked watercress. Cancer Epidem Biomark Prev 8:447–451

    CAS  Google Scholar 

  • Giallourou N, Oruna-Concha MJ, Harbourne N (2016) Effects of domestic processing methods on the phytochemical content of watercress (Nasturtium officinale). Food Chem 212:411–419

    Article  CAS  PubMed  Google Scholar 

  • Gill CIR, Haldar S, Boyd LA et al (2007) Watercress supplementation in diet reduces lymphocyte DNA damage and alters blood antioxidant status in healthy adults. Am J Clin Nutr 85:504–510

    Article  CAS  PubMed  Google Scholar 

  • Going B, Simpson J, Even T (2008) The influence of light on the growth of watercress (Nasturtium officinale R. Br.). Hydrobiologia 607:75–85

    Article  CAS  Google Scholar 

  • Goncalves EM, Cruz RMS, Abreu M et al (2009) Biochemical and colour changes of watercress (Nasturtium officinale R. Br.) during freezing and frozen storage. Food Eng 93:32–39

    Article  CAS  Google Scholar 

  • Goralska K, Dynowska M (2012) Fungistatic properties of glucosinolates: minimal inhibitory concentration (MIC). Mikol Lek 19:12–16

    CAS  Google Scholar 

  • Gutiérrez-Velázquez MV, Almaraz-Abarca N, Herrera-Arrieta Y et al (2018) Comparison of the phenolic contents and the epigenetic and genetic variability of wild and cultivated watercress (Rorippa nasturtium var. aquaticum L.). Electron J Biotechnol 34. https://doi.org/10.1016/j.ejbt.2018.04.005

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hecht SS, Carmella SG, Murphy SE (1999) Effects of watercress consumption on urinary metabolites of nicotine in smokers. Cancer Epidemiol Biomark Prev 8:907–913

    CAS  Google Scholar 

  • Hecht SS, Carmella SG, Kenney PMJ et al (2004) Effects of cruciferous vegetable consumption on urinary metabolites of the tobacco- specific lung carcinogen 4 -(methylnitrosamino) -1- (3-pyridyl) -1- butanone in Singapore Chinese. Cancer Epidemiol Biomark Prev 13:997–1004

    Article  CAS  Google Scholar 

  • Hedge IC (1968) Nasturtium. In: Rechinger KH (ed) Flora Iranica, 57 (Cruciferae). kademischeDruck-U. Verlagsanstalt, Graz

    Google Scholar 

  • Horace GC (1995) Microbial natural products that affect plants, phytopathogens, and certain other microorganisms. Crit Rev Plant Sci 14(5):413–444

    Article  Google Scholar 

  • Howard HW, Lyon AG (1951) Effect of light on the germination of watercress seeds. Nature 168:253–254

    Article  Google Scholar 

  • Howard HW, Lyon AG (1952a) Nasturtium microphyllum Boenningh. Ex Rchb. (Nasturtium uniseriatum) Howard & Manton; Rorippa microphylla (Boenn.) Hyl. Biological flora of the British Isles. J Ecol 40:239–245

    Google Scholar 

  • Howard HW, Lyon AG (1952b) Nasturtium officinale R. (Rorippa nasturtium-aquaticum (L.) Hayek). Biological flora of the British Isles. J Ecol 40:228–238

    Article  Google Scholar 

  • Howard-Williams C, Davies J, Pickmere S (1982) The dynamics of growth, the effects of changing area and nitrate uptake by watercress Nasturtium officinale R. Br. in a New Zealand stream. J Appl Ecol 19(2):589–601

    Article  Google Scholar 

  • Hrotko K, Magyar L, Gyeviki M (2008) Evaluation of native hybrids of Prunus fruticosa Pall. as cherry interstocks. Acta Agric Serbica 13:41–45

    Google Scholar 

  • Innes NL (1985) The work of the NVRS in conservation and breeding of vegetables. Garden 110:57–65

    Google Scholar 

  • Iriondo JM, Perez C (1990) Application of in vitro culture techniques to the conservation of Iberian endemic plant species. Bot Gard Microprop News 1:4–6

    Google Scholar 

  • Jafari S (2012) Evaluation of storage life and genetic diversity among some of Iranian watercress accessions (Nasturtium officinale L.) and effects of its extract on control of citrus green mold. Master of Science Thesis. Faculty of Agriculture and Natural Resources. University of Tehran, Karaj

    Google Scholar 

  • Jafari S, Hassandokht MR (2012) Evaluation of some Iranian watercress (Nasturtium officinale R MR) populations using agromorphological traits. Inter J For Soil Eros 2(3):119–123

    Google Scholar 

  • Jafari S, Hassandokht MR, Nikkhah MJ (2014) Effects of dog rose and watercress extracts on control of green mould decay and postharvest quality of orange fruits. Natural Prod Res 28(22):2061–2065

    Article  CAS  Google Scholar 

  • Jafari S, Saadati M, Hassandokht MR (2015) Evaluation of antioxidant capacity, total phenolic compounds and vitamin C content of some watercress (Nasturtium officinale R. Br.) populations of Iran. J Appl Biol 26(2):25–36

    Google Scholar 

  • Jeon J, Bong SJ, Park JS et al (2017) De novo transcriptome analysis and glucosinolate profiling in watercress (Nasturtium officinale R Br). BMC Genom 18:401

    Article  CAS  Google Scholar 

  • Johnson AG (1974) Possibilities and problems in breeding of watercress. Symposium on research on the watercress crop, Bath University, Bath

    Google Scholar 

  • Kaskey JB, Tindall DR (1979) Physiological aspects of growth and heteroblastic development of Nasturtium officinale under natural conditions. Aquat Bot 7(3):209–229

    Article  Google Scholar 

  • Khoobchandani M, Ojeswi BK, Ganesh N et al (2010) Antimicrobial properties and analytical profile of traditional Eruca sativa seed oil: comparison with various aerial and root plant extracts. Food Chem 120:217–224

    Article  CAS  Google Scholar 

  • Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nature Cancer 42(1):1–9

    Article  Google Scholar 

  • Les DH (1994) Molecular systematics and taxonomy of lake cress (Neobeckia aquatica; Brassicaceae), an imperiled aquatic mustard. Aquat Bot 49:149–165

    Article  CAS  Google Scholar 

  • Levin I, Lalazar A, Bar M, Schaffer AA (2004) Non GMO fruit factories: strategies for modulating metabolic pathways in the tomato fruit. Ind Crops Prod 20:29–36

    Article  CAS  Google Scholar 

  • Mahjoub A, El-Gharbi MS, Mguis K et al (2009) Evaluation of genetic diversity in Aegilops genticulata populations using morphological and RAPD markers. Pak Biol Sci 12(14):994–1003

    Article  CAS  Google Scholar 

  • Manton I (1935) The cytological history of watercress (Nasturtium officinale R Br). Z Indukt Abstammungs Vererbungst 69:132–157

    Google Scholar 

  • Martin C, Zhang Y, Tonelli C, Petroni K (2013) Plants, diet, and health. Ann Rev Plant Biol 64:19–46

    Article  CAS  Google Scholar 

  • Mikkelsen MD, Petersen BL, Olsen CE, Halkier BA (2002) Biosynthesis and metabolic engineering of glucosinolates. Amino Acids 22:279–295

    Article  CAS  PubMed  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naqinezhad A (2006) A short note on the genus Nasturtium (Cruciferae), and a new hybrid state from this genus for Iran. Iran J Bot 12(1):75–77

    Google Scholar 

  • Nishikawa K, Ishimaru K (1997) Flavonoids in root cultures of Scutellaria baicalensis. J Plant Physiol 151:633–636

    Article  CAS  Google Scholar 

  • O'Kane SL, Al-Shehbaz IA (1997) A synopsis of Arabidopsis (Brassicaceae). Novon 7:323–327

    Article  Google Scholar 

  • Omidbaiegi, R (2005) Approach to production and processing of medicinal plants. Beh-Nashr Publication, Mashhad, p 438

    Google Scholar 

  • Palaniswamy UR, McAvoy RJ, Bible BB, Stuart JD (2003) Ontogenic variations of ascorbic acid and phenethyl isothiocyanate concentrations in watercress (Nasturtium officinale R.Br.) leaves. J Agric Food Chem 51:5504–5509

    Article  CAS  PubMed  Google Scholar 

  • Park N, Kim JK, Park WT et al (2011) An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes. Mol Biol Rep 38:4947–4953

    Article  CAS  PubMed  Google Scholar 

  • Payne AC, Clarkson GJJ, Rothwell S, Taylor G (2015) Diversity in global gene expression and morphology across watercress (Nasturtium officinale R. Br.) germplasm collection: first steps to breeding. Hortic Res 2:1–8

    Article  CAS  Google Scholar 

  • Pereira LP, Silva P, Duarte M (2017) Targeting colorectal cancer proliferation, stemness and metastatic potential using Brassicaceae extracts enriched in isothiocyanates: A3D cell model-based study. Nutrients. https://doi.org/10.3390/nu9040368

  • Rao AQ, Bakhsh A, Kiani S et al (2009) The myth of plant transformation. Biotechnol Adv 27:753–763

    Article  PubMed  Google Scholar 

  • Riezzo G, Chiloiro M, Russo F (2005) Functional foods: salient features and clinical applications. Curr Drug Targ Immune Endocr Metabol Disord 5:331–337

    Article  CAS  Google Scholar 

  • Rothwell SD, Robinson LW (1986) Cold acclimation potential of watercress in relation to growing season and nutrient status. J Hortic Sci 61:373–378

    Article  Google Scholar 

  • Shaw HKA (1947) The botanical name of the wild tetraploid watercress. Kew Bull 1:39–43

    Article  Google Scholar 

  • Sheridan GEC, Claxton JR, Clarkson JM, Blakesley D (2001) Genetic diversity within commercial populations of watercress (Rorippa nasturtium-aquaticum), and between allied Brassicaceae inferred from RAPD-PCR. Euphytica 122:319–325

    Article  CAS  Google Scholar 

  • Silva MF, Campos VP, Barros AF et al (2020) Volatile emissions of watercress (Nasturtium officinale) leaves and passion fruit (Passiflora edulis) seeds against Meloidogyne incognita. Pest Manage Sci 76(4):1413–1421

    Article  CAS  Google Scholar 

  • Simon JE, Chadwick AF, Craker LE (1984) Herbs: an indexed bibliography. 1971–1980. The scientific literature on selected herbs, and aromatic and medicinal plants of the temperate zone. 6 Jan 2005. Archon Books Publisher, Hamden, 770 p

    Google Scholar 

  • Smith EN (2007) Watercress (Nasturtium officinale) production utilizing brook trout (Salvelinus fontinalis) flow-through aquaculture effluent. Davis College of Agriculture, Forestry, and Consumer Sciences at West Virginia University, West Virginia. http://aquaculture.davis.wvu.edu/r/download/121691

  • Sweeney PW, Price RA (2000) Polyphyly of the genus Dentaria (Brassicaceae): evidence from trnL intron and ndhF sequence data. Syst Bot 25:468–478

    Article  Google Scholar 

  • Takayanagi K (1980) Seed storage and viability tests. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica crops and wild allies. Biology and breeding. Japan Scientific Societies Press, Tokyo, pp 303–321

    Google Scholar 

  • Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37(3):959–967

    Article  CAS  PubMed  Google Scholar 

  • Thompson GM (1922) The naturalization of animals and plants in New Zealand. Cambridge University Press, London

    Google Scholar 

  • Tomlinson JA, Hunt J (1987) Studies on watercress chlorotic leaf spot virus and on the control of the fungus vector (Spongospora subterranea) with zinc. Ann Appl Biol 110:75–88

    Article  CAS  Google Scholar 

  • Tsunoda S, Hinata K, Gomez-Campo C (1980a) Preservation of genetic resources. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica crops and wild allies. Biology and breeding. Japan Scientific Societies Press, Tokyo, pp 339–341

    Google Scholar 

  • Tsunoda S, Hinata K, Gomez-Campo C (1980b) Brassica crops and wild allies. Biology and breeding. Japan Scientific Societies Press, Tokyo, pp 220–223

    Google Scholar 

  • USDA-ARS (2013) Germplasm Resources Information Network (GRIN). Online Database. National Germplasm Resources Laboratory, Beltsville. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysimple.aspx

  • USDA-ARS (2014) Germplasm Resources Information Network (GRIN). Online Database. National Germplasm Resources Laboratory, Beltsville. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomysearch.aspx

  • Valentine DH (1993) Nasturtium. In: Tutin TG (ed) Flora Europea, 2nd edn. Cambridge University Press, Cambridge, pp 345–346

    Google Scholar 

  • Voutsina N, Payne AC, Hancock RD (2016) Characterization of the watercress (Nasturtium officinale R. Rr.; Brassicaceae) transcriptome using RNASeq and identification of candidate genes for important phytonutrient traits linked to human health. BMC Genomics 17:378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • WHO (2007) Report of the WHO informal meeting on use of triclabendazole in fascioliasis control. WHO Headquarters, Geneva, Switzerland, 17–18 October 2006

    Google Scholar 

  • Yalcinkaya E, Ozguc S, Torer YO, Zeybek U (2019) The importance of the medicinal plant Nasturtium officinale L. in the anticancer activity research. J Sci Perspect 3(2):159–164

    Google Scholar 

  • Yan C, Du J, Gao L et al (2019) The complete chloroplast genome sequence of watercress (Nasturtium officinale R Br): genome organization, adaptive evolution and phylogenetic relationships in Cardamineae. Gene 699:24–36

    Article  CAS  PubMed  Google Scholar 

  • Yazdanparast R, Bahramikia S, Ardestani A (2008) Nasturtium officinale reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats. Chemico-Biol Interact 172:176–184

    Article  CAS  Google Scholar 

  • Zhang J, Xiao K, Zhang Y et al (2008) Quantitative trait loci analysis for plant morphological traits in rice (Oryza sativa L) under different environments. Intern J Plant Breed Gen 2(1):1–8

    Google Scholar 

  • Zhi-Bi H, Min D (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 48:121–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Hassandokht .

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: The Countries Where Watercress (Nasturtium officinale R. Br.) Is Present in Various Continents

Continent/Country

Origin

Africa

Algeria

Native

Democratic Republic of the Congo

Introduced

Egypt

Native

Eritrea

Introduced

Ethiopia

Introduced

Kenya

Introduced

Lybia

Native

Morocco

Native

South Africa

Introduced

Tunisia

Native

Uganda

Introduced

Asia

Afghanistan

Native

Armenia

Native

Azerbaijan

Native

China

Native

Himachal Pradesh

Native

Jammu and Kashmir

Native

Iran

Native

Iraq

Native

Israel

Native

Jordan

Native

Japan

Introduced

Kazakhstan

Native

Kyrgyzstan

Native

Lebanon

Native

Pakistan

Native

Syria

Native

Tajikistan

Native

Turkey

Native

Turkmenistan

Native

Uzbekistan

Native

Yemen

Introduced

Europe

Albania

Native

Austria

Native

Belgium

Native

Bulgaria

Native

Czechia

Native

Denmark

Native

France

Native

Germany

Native

Greece

Native

Hungary

Native

Ireland

Native

Italy

Native

Netherlands

Native

Poland

Native

Portugal

Native

Romania

Native

Russia

Native

Serbia and Montenegro

Native

Slovenia

Native

Spain

Native

Sweden

Native

Switzerland

Native

Ukraine

Native

United Kingdom

Native

North America

Canada

Introduced

British Columbia

Introduced

Manitoba

Introduced

New Brunswick

Introduced

Newfoundland and Labrador

Introduced

Ontario

Introduced

Prince Edward Island

Introduced

Quebec

Introduced

Saint Pierre and Miquelon

Introduced

United States

Introduced

Alabama

Introduced

Alaska

Introduced

Arkansas

Introduced

Georgia

Introduced

Hawaii

Introduced

Idaho

Introduced

Kentucky

Introduced

Maine

Introduced

Massachusetts

Introduced

Michigan

Introduced

Minnesota

Introduced

Mississippi

Introduced

Nebraska

Introduced

New Hampshire

Introduced

New Mexico

Introduced

New York

Introduced

North Carolina

Introduced

Oregon

Introduced

Pennsylvania

Introduced

Tennessee

Introduced

Virginia

Introduced

Wisconsin

Introduced

South America

Argentina

Introduced

Chile

Introduced

Oceania

Australia

Introduced

New South Wales

Introduced

Queensland

Introduced

South Australia

Introduced

Tasmania

Introduced

Victoria

Introduced

New Zealand

Introduced

  1. Source: USDA-ARS (2013)

1.2 Appendix II: Research Institutes Relevant to Watercress (Nasturtium officinale R. Br.)

Institution name

Specialization and research activities

Address / Country

Contact information and website

Centre for Biological Sciences, Institute for Life Sciences, University of Southampton

Plant adaptation to the changing environment, genomics studies linked to phenotypic analysis

Southampton, SO17 1BJ, UK

Gail Taylor

G.Taylor@soton.ac.uk

https://www.southampton.ac.uk/life-sciences/

Vitacress Salads Ltd, Lower Link Farm

Suppliers of fresh produce, specialising in watercress, salads and fresh herbs

St Mary Bourne, Andover, Hampshire, SP11 6DB, UK

Graham Clarkson

gjjclarkson@hotmail.com

https://www.vitacress.com/

Genetic Resources Unit, Wellesbourne Campus, The University of Warwick, UK Vegetable Genebank

Vegetable Genebank

Wellesbourne, Warwick CV35 9EF, UK

https://warwick.ac.uk/fac/sci/lifesci/wcc/gru/genebank/

Vegetable Crops & Medicinal and Aromatic Plants, Department of Agricultural, Forest and Food Sciences, University of Turin

Medicinal plants

10095 Grugliasco Turin, Italy

Silvana Nicola

silvana.nicola@unito.it

https://en.unito.it/

Idaho Department of Agriculture

Idaho Invasive Species Council

Invasive species

 

Amy Ferriter

aferriter@agri.idaho.gov

http://invasivespecies.idaho.gov/

Department of Crop Science, College of Agriculture and Life

Sciences, Chungnam National University

Agriculture

220 Gung-dong, Yuseong-gu, Daejeon 305–764, Korea

supark@cnu.ac.kr

http://plus.cnu.ac.kr/html/kr/intro.html

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hassandokht, M., Jafari, S., Ebrahimi, R. (2021). Watercress (Nasturtium officinale R. Br.) Breeding. In: Al-Khayri, J.M., Jain, S.M., Johnson, D.V. (eds) Advances in Plant Breeding Strategies: Vegetable Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-66969-0_6

Download citation

Publish with us

Policies and ethics