Skip to main content

Plasmonic Hook

  • Chapter
  • First Online:
The Photonic Hook

Abstract

Until recently the surface plasmon polariton (SPP) waves propagating along the curve trajectory were the only Airy-family plasmonic beams. In 2018, a new class of curved surface plasmon wave – the plasmonic hook (PH) – was introduced. The PH is created using the in-plane focusing of the SPP wave through a wavelength-scaled Janus dielectric particle. This is fundamentally simpler than the generation of the known SPP Airy-family beams. The PH propagates along a wavelength-scaled curved trajectory with radius less than the SPP wavelength, which represents the smallest radius of curvature ever recorded for an SPP beam, and can exist despite the strong energy dissipation at metal surface. In this chapter, we discussed some key properties of PH and its experimental verification. Some of applications are also discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bohm and E. P. Gross. Theory of Plasma Oscillations. A. Origin of Medium-Like Behavior // Phys. Rev. 75, 1851 (1949)

    Article  ADS  MATH  Google Scholar 

  2. E. Ozbay. Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions // Science, 311(5758), 189–193 (2006)

    Article  ADS  Google Scholar 

  3. Z. Liu, J. Steele, W. Srituravanich, Y. Pikus, C. Sun, X. Zhang, Focusing Surface Plasmons with a Plasmonic Lens // Nano Lett. 5 (9), 1726–1729 (2005).

    Article  ADS  Google Scholar 

  4. J. A. Polo, Jr., T. G. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective (Elsevier, Waltham, MA, 2013).

    Google Scholar 

  5. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, S.-H. Oh. Three-Dimensional Plasmonic Nanofocusing // Nano Lett. 10, 1369–1373 (2010).

    Article  ADS  Google Scholar 

  6. I. V. Minin, O.V. Minin, 3D diffractive focusing THz of in-plane surface plasmon polariton waves // J. of Electromagnetic Analysis and Applications, 2, 116–119 (2010)

    ADS  Google Scholar 

  7. G. Wu, J. J. Chen, R. Zhang, J. H. Xiao, Q. H. Gong, Highly Efficient Nanofocusing in a Single Step-like Microslit // Opt. Lett. 38 (19), 3776–3779 (2013).

    Article  ADS  Google Scholar 

  8. M. Takeda, S. Okuda, T. Inoue, K. Aizawa, Focusing Characteristics of a Spiral Plasmonic Lens // Jpn. J. Appl. Phys. 52, 09LG03 (2013).

    Article  Google Scholar 

  9. R. G. Mote, O. V. Minin, I.V. Minin, Focusing behavior of 2-dimensional plasmonic conical zone plate // Opt. Quant. Electron. 49, 271 (2017).

    Article  Google Scholar 

  10. P. Melentiev, A. Kuzin, D. Negrov, V. Balykin, Diffraction-Limited Focusing of Plasmonic Wave by a Parabolic Mirror // Plasmonics, 13 (6), 2361–2367 (2018).

    Article  Google Scholar 

  11. X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, H. Giessen, Beam switching and bifocal zoom lensing using active plasmonic metasurfaces // Light: Science & Applications, 6, e17016 (2017).

    Article  ADS  Google Scholar 

  12. V. Smolyaninova, I. Smolyaninov, A. Kildishev, V. Shalaev, Maxwell fish-eye and Eaton lenses emulated by microdroplets // Opt. Lett. 35, 3396–3398 (2010).

    Article  ADS  Google Scholar 

  13. A. Hohenau, J. Krenn, A. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, F. Aussenegg, Dielectric optical elements for surface plasmons // Opt. Lett., 30 (8), 893–895 (2005).

    Article  ADS  Google Scholar 

  14. I. V. Minin, O. V. Minin, Diffractive Optics and Nanophotonics: Resolution Below the Diffraction Limit, Springer, Cham (2015).

    Google Scholar 

  15. W. Shi, T. Chen, H. Jing, R. Peng, M. Wang, Dielectric lens guides in-plane propagation of surface plasmon polaritons // Opt. Express, 25 (5), 5772–5780 (2017).

    Article  ADS  Google Scholar 

  16. C. Gartcia-Ortiz, R. Cortes, J. Gomez-Correa, E. Pisano, J. Fiutowski, R. Garcia-Ortiz, V. Ruitz-Cortes, H. Rubahn, V. Coello. Plasmonic metasurface Luneburg lens // Photonics Research, 7(10), 1112 (2019).

    Article  Google Scholar 

  17. D. Ju, H. Pei, Y. Jiang, X. Sun, Controllable and enhanced nanojet effects excited by surface plasmon polariton // Appl. Phys. Lett. 102, 171109 (2013).

    Article  ADS  Google Scholar 

  18. A. Heifetz, S. Kong, A. Sahakian, A. Taflove, V. Backman, Photonic Nanojets // Journal of Computational and Theoretical Nanoscience, 6/9, 1979–1992 (2009).

    Article  Google Scholar 

  19. B. Luk’yanchuk, R. Paniagua-Domínguez, I. V. Minin, O.V. Minin, Z. Wang, Refractive index less than two: Photonic nanojets yesterday, today and tomorrow // Opt. Mater. Express, 7, 1820–1847 (2017).

    Article  ADS  Google Scholar 

  20. V. Pacheco-Pena, I. V. Minin, O.V. Minin, M. Beruete, Comprehensive analysis of photonic nanojets in 3D dielectric cuboids excited by surface plasmons // Ann. Phys. 528, 1–9 (2016).

    Google Scholar 

  21. G. Goubau, F. Schwering, On the guided propagation of electromagnetic wave beams // IRE Trans. Antennas Propag. 9, 248-256 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  22. I. V. Minin, O.V. Minin, V. Pacheco-Peña, M. Beruete. All-dielectric periodic terajet waveguide using an array of coupled cuboids // Appl. Phys. Lett. 106, 254102 (2015).

    Article  ADS  Google Scholar 

  23. V. Pacheco-Pena, I. V. Minin, O.V. Minin, M. Beruete, Increasing Surface Plasmons Propagation via Photonic Nanojets with Periodically Spaced 3D Dielectric Cuboids // Photonics, 3, 1–7 (2016).

    Article  Google Scholar 

  24. I. V. Minin, O. V. Minin, D. Ponomarev, I. Glinskiy, D. Yakubovsky, V. Volcov. First experimental observation of plasmonic photonic jet based on dielectric cube // arXiv:1912.13373 (2019)

    Google Scholar 

  25. I. V. Minin, O. V. Minin, I. Glinskiy, R. Khabibullin, R. Malureanu, A. Lavrinenko, D. Yakubovsky, A. Arsenin, V. Volkov, and D. Ponomarev. Plasmonic nanojet: an experimental demonstration // Optics Letters 45(12), 3244 (2020)

    Article  ADS  Google Scholar 

  26. Allresist GmbH Datasheet. “Positive E-Beam Resists AR-P 6200 (CSAR 62),” https://www.nanophys.kth.se/nanolab/resists/allresist/produktinfos_ar-p6200_englisch.pdf

  27. V. Pacheco-Peña, M. Beruete, I. V. Minin, O.V. Minin, Terajets produced by dielectric cuboids // Appl. Phys. Lett. 105, 084102 (2014).

    Article  ADS  Google Scholar 

  28. O. V. Minin, I.V. Minin, Terahertz artificial dielectric cuboid lens on substrate for super-resolution images // Opt. Quantum Electron. 49, 326–329 (2017).

    Article  Google Scholar 

  29. M. Khodzinsky, A. Vosianova, V. Gill, A. Chernyadiev, A. Grebenchukov, I. V. Minin, and O. V. Minin. “Formation of terahertz beams produced by artificial dielectric periodical structures”, Proc. SPIE 9918, Metamaterials, Metadevices, and Metasystems 2016, 99182X (16 September 2016)

    Google Scholar 

  30. I.V. Minin, C.-Y. Liu, Y. E Geints, O. V. Minin. Recent advantages in Integrated Photonic Jet-Based Photonics // Photonics 7(2), 41 (2020)

    Article  Google Scholar 

  31. H. Pham, S. Hisatake, I. V. Minin, O. V. Minin, and T. Nagatsuma. Three-Dimensional Direct Observation of Gouy Phase Shift in a Terajet Produced by a Dielectric Cuboid // APL, 108, 191102 (2016)

    Google Scholar 

  32. H. Pham, S. Hisatake, O.V. Minin, T. Nagatsuma and I.V. Minin, Asymmetric Phase Anomaly of Terajet Generated from Dielectric Cube under Oblique Illumination // Appl. Phys. Lett. 110(20), 201105 (2017)

    Article  ADS  Google Scholar 

  33. I. V. Minin, C.-Y. Liu, Y.-C. Yang, K. Staliunas and O. V. Minin. Experimental observation of flat focusing mirror based on photonic jet effect // Sci Rep 10, 8459 (2020)

    Article  ADS  Google Scholar 

  34. P. Dombi, Z. Pápa, J. Vogelsang, S. Yalunin, M. Sivis, G. Herink, S. Schafer, P. Groß, C. Ropers and C. Lienau. Strong-field nano-optics // Rev. Mod. Phys., 92(2), 025003 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Salandrino and D.N. Christodoulides. Airy plasmon: a nondiffracting surface wave // Opt. Lett. 35, 2082 (2010).

    Article  ADS  Google Scholar 

  36. H. Kano, D. Nomura, H. Shibuya, Excitation of surface-plasmon polaritons by use of a zeroth-order Bessel beam // Appl. Optics 43, 2409 (2004).

    Article  ADS  Google Scholar 

  37. C. E. Garcia-Ortiz, V. Coello, S.T. Bozhevolnyi, Generation of diffraction-free plasmonic beams with one-dimensional Bessel profiles // Opt. Lett. 38, 905 (2013).

    Article  ADS  Google Scholar 

  38. A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev, and Y. S. Kivshar. Generation and Near-Field Imaging of Airy Surface Plasmons // Phys. Rev. Lett. 107, 116802 (2011).

    Google Scholar 

  39. L. Li, T. Li, S.M. Wang, C. Zhang, and S.N. Zhu. Plasmonic Airy Beam Generated by In-Plane Diffraction // Phys. Rev. Lett. 107, 126804 (2011).

    Google Scholar 

  40. X. Song, L. Huang, L. Sun, X. Zhang, R. Zhao, X. Li, J. Wang, B. Bai, and Y. Wang. Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface // Applied Physics Letters 112(7):073104 (2018)

    Article  ADS  Google Scholar 

  41. A. Libster-Hershko, I. Epstein, A. Arie, Rapidly accelerating Mathieu and Weber surface plasmon beams // Phys. Rev. Lett. 113, 123902 (2014).

    Article  ADS  Google Scholar 

  42. I. Epstein, H. Suchowski, D. Wesiman, R. Remez, and A. Arie. Observation of linear plasmonic breathers and adiabatic elimination in a plasmonic multi-level coupled system // Opt. Express, 26(2), 1433 (2018)

    Article  ADS  Google Scholar 

  43. N. Efremidis, Z. Chen, M. Segev, D. N. Christodoulides, Airy beams and accelerating waves: An overview of recent advances // Optica, 6, 686–701 (2019).

    Article  ADS  Google Scholar 

  44. P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, X. Zhang, Plasmonic Airy beams with dynamically controlled trajectories // Optics Letters, 36(16), 3191–3193 (2011)

    Article  ADS  Google Scholar 

  45. J. Durnin, J.J. Miceli Jr., J. H. Eberly, Diffraction-free beams // Phys. Rev. Lett. 58, 1499 (1987).

    Article  ADS  Google Scholar 

  46. G. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, Observation of accelerating Airy beams // Phys. Rev. Lett. 99, 213901 (2007).

    Article  ADS  Google Scholar 

  47. I.V. Minin, O.V. Minin, D.S. Ponomarev, I.A. Glinskiy, Photonic Hook Plasmons: A New Curved Surface Wave // Ann. Physik. 1800359 (2018)

    Google Scholar 

  48. W. Liu, D.N. Neshev, I.V. Shadrivov, A.E. Miroshnichenko, Y.S. Kivshar, Plasmonic Airy beam manipulation in linear optical potentials // Opt. Lett. 36, 1164 (2011).

    Article  ADS  Google Scholar 

  49. N. K. Efremidis, Airy trajectory engineering in dynamic linear index potentials // Opt. Lett. 36, 3006– 3008 (2011).

    Article  ADS  Google Scholar 

  50. L. Yue, O. V. Minin, Z. Wang, J. Monks, A. Salin, and I. V. Minin, Photonic hook: a new curved light beam // Optics Letters 43(4), 771–774 (2018).

    Article  ADS  Google Scholar 

  51. I. V. Minin, O. V. Minin, G. Katyba, N. Chernomyrdin, V. Kurlov, K. I. Zaytsev, L. Yue, Z. Wang, and D. N. Christodoulides. Experimental observation of a photonic hook // Appl. Phys. Lett. 114, 031105 (2019)

    Article  ADS  Google Scholar 

  52. O. V. Minin, I. V. Minin, K. I. Zaytsev, G. Katyba, V. Kurlov, L. Yue, Z. Wang, “Electromagnetic field localization behind a mesoscale dielectric particle with a broken symmetry: a photonic hook phenomenon,” Proc. SPIE 11368, Photonics and Plasmonics at the Mesoscale, 1136807 (2 April 2020)

    Google Scholar 

  53. I. V. Minin, O. V. Minin, L. Yue, Z. Wang, V. Volcov, and D. N. Christodoulides. Photonic hook – a new type of subwavelength self-bending structured light beams: a tutorial review // ArXiv: 1910.09543 (2019)

    Google Scholar 

  54. A.S. Ang, A. Karabchevsky, I.V. Minin, O.V. Minin, S.V. Sukhov, and A.S. Shalin. ‘Photonic Hook’ based optomechanical nanoparticle manipulator // Scientific Reports 8, 2029 (2018)

    Article  ADS  Google Scholar 

  55. W. V. Houston, A compound interferometer for fine structure work // Phys Rev, 29, 0478–0484 (1927)

    Google Scholar 

  56. E. Abbe, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung // Archiv für Mikroskopische Anatomie, 9, pages 413–468 (1873); https://doi.org/10.1007/BF02956173

    Article  Google Scholar 

  57. Lord Rayleigh F.R.S. XXXI. Investigations in optics, with special reference to the spectroscope // The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8(49), 261–274 (1879); https://doi.org/10.1080/14786447908639684

    Article  Google Scholar 

  58. K. Dholakia, G. Bruce, Optical hooks, // Nature Photonics 13(4), 229–230 (2019).

    Article  ADS  Google Scholar 

  59. I. V. Minin, O. V. Minin, I. Glinskiy, R. Khabibullin, R. Malureanu, D. Yakubovsky, V. VoIkov, D. Ponomarev. Experimental verification of a plasmonic hook in a dielectric Janus particle // arXiv:2004.10749 (2020)

    Google Scholar 

  60. A. Vial, T. Laroche, M. Dridi, L. Le Cunff. A new model of dispersion for metals leading to a more accurate modeling of plasmonic structures using the FDTD method. // Appl Phys A 103(3), 849–853 (2011).

    Article  ADS  Google Scholar 

  61. H. S. Sehmi, W. Langbein, and E. A. Muljarov. Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper // Phys. Rev. B 95, 115444 (2017)

    Article  ADS  Google Scholar 

  62. F.J. Alfaro-Mozaz, P. Alonso-González, S. Vélez, I. Dolado, M. Autore, S. Mastel, F. Casanova, L.E. Hueso, P. Li, A.Y. Nikitin and R. Hillenbrand, Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas // Nature Communications, 8, 15624 (2017)

    Article  ADS  Google Scholar 

  63. I. V. Minin and O. V. Minin. Recent Trends in Optical Manipulation Inspired by Mesoscale Photonics and Diffraction Optics // J of Biomedical Photonics & Eng 6(2), 020301 (2020)

    Article  Google Scholar 

  64. A.P.Vinogradov, A.V.Dorofeenko, A.M.Merzlikin, and A.A.Lisyansky, Surface states in photonic crystals // Phys.Usp. 53, 243 (2010).

    Article  ADS  Google Scholar 

  65. L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. DiFrancesco, and H.P. Herzig, Manipulating Bloch surface waves in 2D: a platform concept-based flat lens // Light 3, e124 (2014).

    Article  Google Scholar 

  66. M.I. Dyakonov, New type of electromagnetic wave propagating at an interface // Sov.Phys.J. 67, 714 (1988).

    Google Scholar 

  67. O.Takayama, D.Artigas, and L.Torner, Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves // Nat.Nanotechnol. 9, 419 (2014).

    Article  ADS  Google Scholar 

  68. J.A. Polo Jr., and A. Lakhtakia. Surface electromagnetic waves: A review // Laser Photonics Rev. 5, 2, 234–246 (2011)

    Article  ADS  Google Scholar 

  69. Y. Hong and B. M Reinhard. Optoplasmonics: basic principles and applications // J. Opt. 21, 113001 (2019)

    Article  ADS  Google Scholar 

  70. M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant. Surface Plasmon Optical Tweezers: Tunable Optical Manipulation in the Femtonewton Range // PRL 100, 186804 (2008)

    Article  ADS  Google Scholar 

  71. M. L. Juan, M. Righini and R. Quidant. Plasmon nano-optical tweezers // Nature Photonics, 5, 349 (2011)

    Article  ADS  Google Scholar 

  72. J.-S. Huang and Y.-T. Yang. Origin and Future of Plasmonic Optical Tweezers // Nanomaterials 5, 1048–1065 (2015)

    Article  Google Scholar 

  73. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Surface plasmon circuitry // Phys. Today 61, 44–50 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minin, O.V., Minin, I.V. (2021). Plasmonic Hook. In: The Photonic Hook. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-66945-4_4

Download citation

Publish with us

Policies and ethics