Skip to main content

Modeling of Polycrystalline Materials Deformation with Dislocation Structure Evolution and Transition to Fracture

  • Conference paper
  • First Online:
High-Performance Computing Systems and Technologies in Scientific Research, Automation of Control and Production (HPCST 2020)

Abstract

Computing experiments on simulation of deformation and destruction processes of polycrystalline materials is a relevant and efficient research method. This approach suggests building a mathematical model of the material and its exploitation for numerical experiments. The development of the physically based mathematical model for the description of the material behavior during deformation will allow optimizing the properties of constructions without conducting numerous natural experiments. It has been established that when solving similar tasks, it is necessary to take into account the evolution of the meso- and microstructure, including nucleation and development of defects at various structural and scale levels. Consideration of the dislocation structure evolution enables establishing the regions of dislocation accumulation and, as a consequence, simulating the nucleation and subsequent development of microcracks. The purpose of the present study is to develop and realize the dislocation-oriented direct elasto-visco-plastic model, taking into account the processes of microcrack nucleation. The structure and the algorithm of the numerical implementation of the direct model have been presented; the structural levels of the description of elasto-plastic deformation have been identified; a system of evolution equations for the description of dislocation motions and dislocation substructures formation on slip systems with subsequent transition to destruction has been presented. Using the parameters, characterising the dislocation structure, a criterion of the transition into the destructed state has been suggested, in which the material element of the appropriate scale level loses an ability to resist external impacts. The description of the application software package intended for the implementation of multilevel models of the representative volume of polycrystalline solids has been given. The submodel of the description of the dislocation density evolution of the crystallite has been realised; the influence of the mechanisms of nucleation and annihilation of dislocations on their total density has been analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bengus, V.Z., et al.: Plasticity of the nanostructural and polycrystalline titan at temperatures 300, 77, and 4.2. Metallophys. Adv. Technol. 26(11), 1483–1492 (2004). (in Russian)

    Google Scholar 

  2. Valiev, R.Z., Najmark, O.B.: Bulk nanostructured materials: unique properties and innovative potential. Innovations 12(110), 70–76 (2007). (in Russian)

    Google Scholar 

  3. Gorynin, I.V.: Creation of structural and functional nanomaterials. Innovations 6(116), 34–43 (2008). (in Russian)

    Google Scholar 

  4. Islamgaliev, R.K., Nesterov, K.M., Khafizova, E.D., Ganeev, A.V., Golubovskiy, E.R., Volkov, M.E.: Strength and fatigue of ultrafine-grained aluminum-based alloy AK4-1. Vestnik UGATU 16(8–53), 104–109 (2012). (in Russian)

    Google Scholar 

  5. Islamgaliev, R.K., Ganeev, A.V., Nikitina, M.A., Karavaeva, M.V.: Structure and properties of ultrafine-grained martensitic steel. Vestnik UGATU 20(3–73), 19–24 (2016). (in Russian)

    Google Scholar 

  6. Sitdikov, O.S.: Effect of multidirectional forging on the fine-grained structure development in a high-strength aluminum alloy. Lett. Mater. 3(3), 215–220 (2013). (in Russian)

    Google Scholar 

  7. Gleiter, H.: Nanocrystallinematerials. Prog. Mater. Sci. 33, 223–315 (1989). https://doi.org/10.1016/0079-6425(89)90001-7

    Article  Google Scholar 

  8. López-Chipres, E., Garcia-Sanchez, E., Ortiz-Cuellar, E., Hernandez-Rodriguez, M.A.L., Colás, R.: Optimization of the severe plastic deformation processes for the grain refinement of Al6060 alloy using 3D FEM analysis. J. Mater. Eng. Perform. 1–7 (2010). https://doi.org/10.1007/s11665-010-9783-1

  9. Suwas, S., Bhowmik, A., Biswas, S.: Ultra-fine grain materials by severe plastic deformation: application to steels. In: Haldar, A., Suwas, S., Bhattacharjee D. (eds.). Microstructure and Texture in Steels, pp. 325–344 (2009). https://doi.org/10.1007/978-1-84882-454-6_19

  10. Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45(2), 103–189 (2000). https://doi.org/10.1016/s0079-6425(99)00007-9

    Article  Google Scholar 

  11. Valiev, R.Z., Aleksandrov, I.V.: Nanostructured materials obtained by severe plastic deformation. Logos, Moscow (2000). (in Russian)

    Google Scholar 

  12. Noskova, N.I., Mulyukov, R.R.: Submicrocrystalline and nanocrystalline metals and alloys. UrO RAN, Ekaterinburg (2003). (in Russian)

    Google Scholar 

  13. Murashkin, M.Y., Markushev, M.V., Ivanisenko, Y.V., Valiev, R.Z.: Strength of commercial aluminum alloys after equal channel angular pressing (ECAP) and post-ECAP processing. Solid State Phenom. 114, 91–96 (2016). https://doi.org/10.4028/www.scientific.net/SSP.114.91

    Article  Google Scholar 

  14. Hong, X., Godfrey, A., Zhang, C.L., Liu, W., Chapuis, A.: Investigation of grain subdivision at very low plastic strains in a magnesium alloy. Mater. Sci. Eng. 693, 14–21 (2017). https://doi.org/10.1016/j.msea.2017.03.080

    Article  Google Scholar 

  15. Dobatkin, S., et al.: Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling. J. Alloy. Compd. 774, 969–979 (2019). https://doi.org/10.1016/j.jallcom.2018.09.065

    Article  Google Scholar 

  16. Song, M., et al.: Grain refinement mechanisms and strength-hardness correlation of ultrafine grained grade 91 steel processed by equal channel angular extrusion. Int. J. Pressure Vessels Pip. 172, 212–219 (2019). https://doi.org/10.1016/j.ijpvp.2019.03.025

    Article  Google Scholar 

  17. Trusov, P.V., Shveykin, A.I.: Multilevel models of mono- and polycrystalline materials: theory, algorithms, application examples. SO RAN, Novosibirsk (2019). https://doi.org/10.15372/multilevel2019tpv (in Russian)

  18. Volegov, P.S., Gribov, D.S., Trusov, P.V.: Damage and fracture: review of experimental studies. Phys. Mesomech. 19(3), 319–331 (2016). https://doi.org/10.1134/s1029959916030103

    Article  Google Scholar 

  19. Tang, X.S., Wei, T.T.: Microscopic inhomogeneity coupled with macroscopic homogeneity: A localized zone of energy density for fatigue crack growth. Int. J. Fatigue 70, 270–277 (2015). https://doi.org/10.1016/j.ijfatigue.2014.10.003

    Article  Google Scholar 

  20. Naimark, O.B.: Collective properties of defect ensembles and some nonlinear problems of plasticity and fracture. Phys. Mesomech. 6(4), 45–72 (2003). (in Russian)

    Google Scholar 

  21. Volegov, P.S., Gribov, D.S., Trusov, P.V.: Damage and fracture: classical continuum theories. Phys. Mesomech. 20(2), 157–173 (2017). https://doi.org/10.1134/s1029959917020060

    Article  Google Scholar 

  22. Volegov, P.S., Gribov, D.S., Trusov, P.V.: Damage and fracture: crystal plasticity models. Phys. Mesomech. 20(2), 174–184 (2017). https://doi.org/10.1134/s1029959917020072

    Article  Google Scholar 

  23. McDowell, D.L., Olson, G.B.: Concurrent design of hierarchical materials and structures. Sci. Model Simul. 15(1–3), 207–240 (2010). https://doi.org/10.1007/s10820-008-9100-6

    Article  Google Scholar 

  24. Nakamachi, E., Kuramae, H., Sakamoto, H., Morimoto, H.: Process metallurgy design of aluminum alloy sheet rolling by using two-scale finite element analysis and optimization algorithm. Int. J. Mech. Sci. 52, 146–157 (2010). https://doi.org/10.1016/j.proeng.2011.04.372

    Article  Google Scholar 

  25. Vladimirov, V.I.: The physical nature of metals fracture. Metallurgy, Moscow (1984). (in Russian)

    Google Scholar 

  26. Gerard, A.: Maugin Continuum Mechanics of Electromagnetic Solids, North-Holland etc, (1988)

    Google Scholar 

  27. McDowell, D.L.: Internal state variable theory. In: Yip, S. (ed.), Handbook of Materials Modeling. Springer, pp. 1151–1169 (2005). https://doi.org/10.1007/978-1-4020-3286-8_58

  28. Pozdeev, A.A., Trusov, P.V., Nyashin, YuI: The Large Elastoplastic Deformation: Theory, Algorithms, Applications. Nauka, Moscow (1986). (in Russian)

    MATH  Google Scholar 

  29. Taylor, G.I.: Plastic strain in metals. J. Inst. Metals 62, 307–324 (1938)

    Google Scholar 

  30. Meyers, M.A., Benson, D.J., Vohringer, O., Kad, B.K., Xue, Q., Fu, H.-H.: Constitutive description of dynamic deformation: physically-based mechanisms. Mater. Sci. Eng. 322(1–2), 194–216 (2002)

    Article  Google Scholar 

  31. Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., Raabe, D.: Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Materialia 58, 1152–1211 (2010). https://doi.org/10.1016/j.actamat.2009.10.058

    Article  Google Scholar 

  32. Hirth, J.P., Lothe, J.: Theory Of Dislocations. McGraw-Hill, New York (1968)

    MATH  Google Scholar 

  33. Austin, R.A., McDowell, D.L.: A dislocation-based constitutive model for viscoplastic deformation of FCC metals at very high strain rates. Int. J. Plast. 27(1), 1–24 (2011)

    Article  Google Scholar 

  34. Leung, H.S., Leung, P.S.S., Cheng, B., Ngan, A.H.W.: A new dislocation-density-function dynamics scheme for computational crystal plasticity by explicit consideration of dislocation elastic interactions. Int. J. Plast. 67, 1–25 (2015). https://doi.org/10.1016/j.ijplas.2014.09.009

    Article  Google Scholar 

  35. Stroh, A.N.: The formation of cracks as a result of plastic flow. Proc. R. Soc. London. Ser. 223, 404–414 (1954). https://doi.org/10.1098/rspa.1954.0124

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Science Foundation (grant No. 17-19-01292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kseniia Kurmoiartseva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurmoiartseva, K., Kotelnikova, N., Trusov, P. (2020). Modeling of Polycrystalline Materials Deformation with Dislocation Structure Evolution and Transition to Fracture. In: Jordan, V., Filimonov, N., Tarasov, I., Faerman, V. (eds) High-Performance Computing Systems and Technologies in Scientific Research, Automation of Control and Production. HPCST 2020. Communications in Computer and Information Science, vol 1304. Springer, Cham. https://doi.org/10.1007/978-3-030-66895-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66895-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66894-5

  • Online ISBN: 978-3-030-66895-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics