Skip to main content

SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology (MLCN 2020, RNO-AI 2020)

Abstract

Automatic classification of epileptic seizure types in electroencephalograms (EEGs) data can enable more precise diagnosis and efficient management of the disease. This task is challenging due to factors such as low signal-to-noise ratios, signal artefacts, high variance in seizure semiology among epileptic patients, and limited availability of clinical data. To overcome these challenges, in this paper, we present SeizureNet, a deep learning framework which learns multi-spectral feature embeddings using an ensemble architecture for cross-patient seizure type classification. We used the recently released TUH EEG Seizure Corpus (V1.4.0 and V1.5.2) to evaluate the performance of SeizureNet. Experiments show that SeizureNet can reach a weighted F1 score of up to 0.95 for seizure-wise cross validation and 0.62 for patient-wise cross validation for scalp EEG based multi-class seizure type classification. We also show that the high-level feature embeddings learnt by SeizureNet considerably improve the accuracy of smaller networks through knowledge distillation for applications with low-memory constraints.

S. Roy now with Google.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The sclap EEG data was collected using 10–20 system [22], and TCP montage [14] was used to select 20 channels of the input. We used the following 20 channels: \(FP1-F7;F7-T3;T3-T5;T5-O1;FP2-F8;F8-T4;T4-T6;T6-O2;T3-C3;C3-CZ;CZ-C4;C4-T4;FP1-F3;F3-C3;C3-P3;P3-O1;FP2-F4;F4-C4;C4-P4;P4-O2\).

  2. 2.

    In this work, we used \({F}=[24,48,64,96]\) Hz, \(\mathcal {W}=[1]\) second, and \(\mathcal {O}=[0.5, 1.0]\) seconds.

References

  1. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adeli, H.: Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput. Biol. Med. 100, 270–278 (2018)

    Article  Google Scholar 

  2. Ahmedt-Aristizabal, D., Fernando, T., Denman, S., Petersson, L., Aburn, M.J., Fookes, C.: Neural memory networks for robust classification of seizure type. arXiv preprint arXiv:1912.04968 (2019)

  3. Alotaiby, T.N., Alshebeili, S.A., Alshawi, T., Ahmad, I., El-Samie, F.E.A.: EEG seizure detection and prediction algorithms: a survey. EURASIP J. Adv. Signal Process. 2014(1), 183 (2014)

    Article  Google Scholar 

  4. Antoniades, A., Spyrou, L., Took, C.C., Sanei, S.: Deep learning for epileptic intracranial EEG data. In: 2016 IEEE 26th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2016)

    Google Scholar 

  5. Boubchir, L., Al-Maadeed, S., Bouridane, A.: On the use of time-frequency features for detecting and classifying epileptic seizure activities in non-stationary EEG signals. In: ICASSP, pp. 5889–5893. IEEE (2014)

    Google Scholar 

  6. Golmohammadi, M., et al.: Gated recurrent networks for seizure detection. In: 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–5. IEEE (2017)

    Google Scholar 

  7. Hao, Y., Khoo, H.M., von Ellenrieder, N., Zazubovits, N., Gotman, J.: DeepIED: an epileptic discharge detector for EEG-fMRI based on deep learning. NeuroImage Clinical 17, 962–975 (2018)

    Google Scholar 

  8. Harrer, S., Shah, P., Antony, B., Hu, J.: Artificial intelligence for clinical trial design. Trends Pharmacol. Sci. 40(8), 577–591 (2019)

    Google Scholar 

  9. Hou, X., Zhang, L.: Saliency detection: a spectral residual approach. In: CVPR, pp. 1–8 (2007)

    Google Scholar 

  10. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  11. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. PAMI 11, 1254–1259 (1998)

    Article  Google Scholar 

  12. Längkvist, M., Karlsson, L., Loutfi, A.: A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recogn. Lett. 42, 11–24 (2014)

    Article  Google Scholar 

  13. Lin, Q., et al.: Classification of epileptic EEG signals with stacked sparse autoencoder based on deep learning. In: Huang, D.-S., Han, K., Hussain, A. (eds.) ICIC 2016. LNCS (LNAI), vol. 9773, pp. 802–810. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42297-8_74

    Chapter  Google Scholar 

  14. Lopez, S., Gross, A., Yang, S., Golmohammadi, M., Obeid, I., Picone, J.: An analysis of two common reference points for EEGS. In: 2016 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), pp. 1–5. IEEE (2016)

    Google Scholar 

  15. Montabone, S., Soto, A.: Human detection using a mobile platform and novel features derived from a visual saliency mechanism. Image Vis. Comput. 28(3), 391–402 (2010)

    Article  Google Scholar 

  16. O’Shea, A., Lightbody, G., Boylan, G., Temko, A.: Investigating the impact of CNN depth on neonatal seizure detection performance. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 5862–5865. IEEE (2018)

    Google Scholar 

  17. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  18. Pramod, S., Page, A., Mohsenin, T., Oates, T.: Detecting epileptic seizures from EEG data using neural networks. arXiv preprint arXiv:1412.6502 (2014)

  19. Roy, S., Asif, U., Tang, J., Harrer, S.: Machine learning for seizure type classification: setting the benchmark. arXiv preprint arXiv:1902.01012 (2019)

  20. Saputro, I.R.D., Maryati, N.D., Solihati, S.R., Wijayanto, I., Hadiyoso, S., Patmasari, R.: Seizure type classification on EEG signal using support vector machine. J. Phys. Conf. Ser. 1201, 012065. IOP Publishing (2019)

    Google Scholar 

  21. Shah, V., et al.: The temple university hospital seizure detection corpus. Front. Neuroinformatics 12, 83 (2018)

    Google Scholar 

  22. Silverman, D.: The rationale and history of the 10–20 system of the international federation. Am. J. EEG Technol. 3(1), 17–22 (1963)

    Article  Google Scholar 

  23. Sriraam, N., Temel, Y., Rao, S.V., Kubben, P.L., et al.: A convolutional neural network based framework for classification of seizure types. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2547–2550. IEEE (2019)

    Google Scholar 

  24. Supratak, A., Li, L., Guo, Y.: Feature extraction with stacked autoencoders for epileptic seizure detection. In: EMBC, pp. 4184–4187. IEEE (2014)

    Google Scholar 

  25. Thodoroff, P., Pineau, J., Lim, A.: Learning robust features using deep learning for automatic seizure detection. In: Machine Learning for Healthcare Conference, pp. 178–190 (2016)

    Google Scholar 

  26. Tsiouris, K.M., Pezoulas, V.C., Zervakis, M., Konitsiotis, S., Koutsouris, D.D., Fotiadis, D.I.: A long short-term memory deep learning network for the prediction of epileptic seizures using EEG signals. Comput. Biol. Med. 99, 24–37 (2018)

    Article  Google Scholar 

  27. Turner, J., Page, A., Mohsenin, T., Oates, T.: Deep belief networks used on high resolution multichannel electroencephalography data for seizure detection. In: 2014 AAAI Spring Symposium Series (2014)

    Google Scholar 

  28. Vidyaratne, L., Glandon, A., Alam, M., Iftekharuddin, K.M.: Deep recurrent neural network for seizure detection. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 1202–1207 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Asif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Asif, U., Roy, S., Tang, J., Harrer, S. (2020). SeizureNet: Multi-Spectral Deep Feature Learning for Seizure Type Classification. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66843-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66842-6

  • Online ISBN: 978-3-030-66843-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics