Skip to main content

Bidirectional Modeling and Analysis of Brain Aging with Normalizing Flows

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12449))

Abstract

Brain aging is a widely studied longitudinal process throughout which the brain undergoes considerable morphological changes and various machine learning approaches have been proposed to analyze it. Within this context, brain age prediction from structural MR images and age-specific brain morphology template generation are two problems that have attracted much attention. While most approaches tackle these tasks independently, we assume that they are inverse directions of the same functional bidirectional relationship between a brain’s morphology and an age variable. In this paper, we propose to model this relationship with a single conditional normalizing flow, which unifies brain age prediction and age-conditioned generative modeling in a novel way. In an initial evaluation of this idea, we show that our normalizing flow brain aging model can accurately predict brain age while also being able to generate age-specific brain morphology templates that realistically represent the typical aging trend in a healthy population. This work is a step towards unified modeling of functional relationships between 3D brain morphology and clinical variables of interest with powerful normalizing flows.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We assume that for healthy subjects, chronological and biological brain age are equal.

  2. 2.

    https://brain-development.org/ixi-dataset/.

References

  1. Ardizzone, L., Kruse, J., Rother, C., Köthe, U.: Analyzing inverse problems with invertible neural networks. In: 7th International Conference on Learning Representations - ICLR 2019 (2019)

    Google Scholar 

  2. Ardizzone, L., Lüth, C., Kruse, J., Rother, C., Köthe, U.: Guided image generation with conditional invertible neural networks. arXiv preprint arXiv:1907.02392 (2019)

  3. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) Medical Image Computing and Computer-Assisted Intervention - MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Berlin Heidelberg (2006). https://doi.org/10.1007/11866565_113

    Chapter  Google Scholar 

  4. Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C., Friston, K.: Identifying global anatomical differences: Deformation-based morphometry. Hum. Brain Mapp. 6(5–6), 348–357 (1998)

    Article  Google Scholar 

  5. Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., Gee, J.C.: A reproducible evaluation of ants similarity metric performance in brain image registration. NeuroImage 54(3), 2033–2044 (2011)

    Article  Google Scholar 

  6. Cole, J.H., Franke, K., Cherbuin, N.: Quantification of the biological age of the brain using neuroimaging. In: Moskalev, A. (ed.) Biomarkers of Human Aging. HAL, vol. 10, pp. 293–328. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24970-0_19

    Chapter  Google Scholar 

  7. Cole, J.H., Marioni, R.E., Harris, S.E., Deary, I.J.: Brain age and other bodily ‘ages’: implications for neuropsychiatry. Molecular Psychiatry 24, 266–281 (2019)

    Article  Google Scholar 

  8. Dalca, A., Rakic, M., Guttag, J., Sabuncu, M.: Learning conditional deformable templates with convolutional networks. Adv. Neural Inf. Process. Syst. 32, 806–818 (2019)

    Google Scholar 

  9. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. In: 5th International Conference on Learning Representations - ICLR 2017 (2017)

    Google Scholar 

  10. Ehrhardt, J., Werner, R., Schmidt-Richberg, A., Handels, H.: A statistical shape and motion model for the prediction of respiratory lung motion. In: Dawant, B.M., Haynor, D.R. (eds.) SPIE Medical Imaging 2010: Image Processing. Proc SPIE, Orlando, USA, vol. 7623, pp. 531–539 (2010)

    Google Scholar 

  11. Ehrhardt, J., Schmidt-Richberg, A., Werner, R., Handels, H.: Variational registration - a flexible open-source itk toolbox for nonrigid image registration. Bildverarbeitung für die Medizin 2015, 209–214 (2015)

    Google Scholar 

  12. Gerber, S., Tasdizen, T., Fletcher, P.T., Joshi, S., Whitaker, R.: Manifold modeling for brain population analysis. Med. Image Anal. 14(5), 643–653 (2010)

    Article  Google Scholar 

  13. Huizinga, W., Poot, D., Vernooij, M., Roshchupkin, G., Bron, E., Ikram, M., Rueckert, D., Niessen, W., Klein, S.: A spatio-temporal reference model of the aging brain. NeuroImage 169, 11–22 (2018)

    Article  Google Scholar 

  14. Kobyzev, I., Prince, S., Brubaker, M.: Normalizing flows: an introduction and review of current methods. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2020)

    Google Scholar 

  15. Kruse, J., Ardizzone, L., Rother, C., Köthe, U.: Benchmarking invertible architectures on inverse problems. In: Workshop on Invertible Neural Networks and Normalizing Flows, International Conference on Machine Learning 2019 (2019)

    Google Scholar 

  16. MacDonald, M.E., Williams, R.J., Forkert, N.D., Berman, A.J.L., McCreary, C.R., Frayne, R., Pike, G.B.: Interdatabase variability in cortical thickness measurements. Cerebral Cortex 29(8), 3282–3293 (2018)

    Article  Google Scholar 

  17. Mateos-Pérez, J.M., Dadar, M., Lacalle-Aurioles, M., Iturria-Medina, Y., Zeighami, Y., Evans, A.C.: Structural neuroimaging as clinical predictor: a review of machine learning applications. NeuroImage Clin. 20, 506–522 (2018)

    Article  Google Scholar 

  18. Sivera, R., Delingette, H., Lorenzi, M., Pennec, X., Ayache, N.: A model of brain morphological changes related to aging and alzheimer’s disease from cross-sectional assessments. NeuroImage 198, 255–270 (2019)

    Article  Google Scholar 

  19. Völzke, H., et al.: Cohort profile: the study of health in pomerania. Int. J. Epidemiol. 40(2), 294–307 (2011)

    Article  Google Scholar 

  20. Wegmayr, V., Hörold, M., Buhmann, J.M.: Generative aging of brain MR-images and prediction of alzheimer progression. In: Fink, G.A., Frintrop, S., Jiang, X. (eds.) German Conference on Pattern Recognition - GCPR 2019. LNCS, vol. 11824, pp. 247–260. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33676-9_17

    Chapter  Google Scholar 

  21. Werner, R., Schmidt-Richberg, A., Handels, H., Ehrhardt, J.: Estimation of lung motion fields in 4D CT data by variational non-linear intensity-based registration: a comparison and evaluation study. Phys. Med. Biol. 59(15), 4247–4260 (2014)

    Article  Google Scholar 

  22. Xia, T., Chartsias, A., Tsaftaris, S.A.: Consistent brain ageing synthesis. In: Shen, D., et al. (eds.) Medical Image Computing and Computer Assisted Intervention - MICCAI 2019. LNCS, vol. 11767, pp. 750–758. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_82

    Chapter  Google Scholar 

  23. Xiao, Z., Yan, Q., Amit, Y.: A method to model conditional distributions with normalizing flows. arXiv preprint arXiv:1911.02052 (2019)

  24. Zhang, M., Wells, W.M., Golland, P.: Probabilistic modeling of anatomical variability using a low dimensional parameterization of diffeomorphisms. Med. Image Anal. 41, 55–62 (2017)

    Article  Google Scholar 

  25. Zhao, Q., Adeli, E., Honnorat, N., Leng, T., Pohl, K.M.: Variational autoencoder for regression: application to brain aging analysis. Medical Image Computing and Computer Assisted Intervention - MICCAI 2019. LNCS, vol. 11765, pp. 823–831. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_91

    Chapter  Google Scholar 

Download references

Acknowledgement

This work was supported by the University of Calgary’s Eyes High postdoctoral scholarship program and the River Fund at Calgary Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Wilms .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1534 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilms, M. et al. (2020). Bidirectional Modeling and Analysis of Brain Aging with Normalizing Flows. In: Kia, S.M., et al. Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology. MLCN RNO-AI 2020 2020. Lecture Notes in Computer Science(), vol 12449. Springer, Cham. https://doi.org/10.1007/978-3-030-66843-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66843-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66842-6

  • Online ISBN: 978-3-030-66843-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics