Chappell, R., Miranpuri, S.S., Mehta, M.P.: Dimension in defining tumor response. J. Clin. Oncol. 16(3), 1234 (1998). https://doi.org/10.1200/JCO.1998.16.3.1234
CrossRef
Google Scholar
Ellingson, B.M., Wen, P.Y., Cloughesy, T.F.: Modified criteria for radiographic response assessment in glioblastoma clinical trials. Neurotherapeutics 14(2), 307–320 (2017). https://doi.org/10.1007/s13311-016-0507-6
CrossRef
Google Scholar
van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Cancer Res. 77(21), e104–e107 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0339
CrossRef
Google Scholar
Isensee, F., Petersen, J., Kohl, S.A., Jäger, P.F., Maier-Hein, K.H.: nnU-Net: breaking the spell on successful medical image segmentation. arXiv preprint arXiv:1904.08128 vol. 1, pp. 1–8 (2019)
Isensee, F., et al.: Automated brain extraction of multisequence MRI using artificial neural networks. Hum. Brain Mapp. 40(17), 4952–4964 (2019). https://doi.org/10.1002/hbm.24750
CrossRef
Google Scholar
James, K., et al.: Measuring response in solid tumors: unidimensional versus bidimensional measurement. JNCI J. Nat. Cancer Inst. 91(6), 523–528 (1999). https://doi.org/10.1093/jnci/91.6.523
CrossRef
Google Scholar
Kickingereder, P., et al.: Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. Lancet Oncol. 20(5), 728–740 (2019). https://doi.org/10.1016/S1470-2045(19)30098-1
CrossRef
Google Scholar
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)
Google Scholar
Lao, J., et al.: A deep learning-based radiomics model for prediction of survival in glioblastoma multiforme. Sci. Rep. 7(1), 1–8 (2017). https://doi.org/10.1038/s41598-017-10649-8
CrossRef
Google Scholar
Mamonov, A.B., Kalpathy-Cramer, J.: Data From QIN GBM Treatment Response. The Cancer Imaging Archive. https://doi.org/10.7937/K9/TCIA.2016.nQF4gpn2
Menze, B.H., Jakab, A., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694
CrossRef
Google Scholar
Reardon, D.A., Ballman, K.V., Buckner, J.C., Chang, S.M., Ellingson, B.M.: Impact of imaging measurements on response assessment in glioblastoma clinical trials. Neuro-Oncology 16(August), v24-vii35 (2014). https://doi.org/10.1093/neuonc/nou286
Reuter, M., Gerstner, E.R., Rapalino, O., Batchelor, T.T., Rosen, B., Fischl, B.: Impact of MRI head placement on glioma response assessment. J. Neurooncol. 118(1), 123–129 (2014). https://doi.org/10.1007/s11060-014-1403-8
CrossRef
Google Scholar
Reuter, M., Rosas, H.D., Fischl, B.: Highly accurate inverse consistent registration: a robust approach. NeuroImage 53(4), 1181–1196 (2010). https://doi.org/10.1016/J.NEUROIMAGE.2010.07.020
CrossRef
Google Scholar
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
MathSciNet
CrossRef
Google Scholar
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR, September 2015
Google Scholar
Spearman, C.: The proof and measurement of association between two things. Am. J. Psychol. 15(1), 72–101 (1904). https://doi.org/10.2307/1422689
CrossRef
Google Scholar
Stupp, R., et al.: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005). https://doi.org/10.1056/NEJMoa043330
CrossRef
Google Scholar
Suter, Y., et al.: Deep learning versus classical regression for brain tumor patient survival prediction. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 429–440. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_38
CrossRef
Google Scholar
Suter, Y., et al.: Radiomics for glioblastoma survival analysis in pre-operative MRI: exploring feature robustness, class boundaries, and machine learning techniques. Cancer Imaging 20(1), 1–13 (2020). https://doi.org/10.1186/s40644-020-00329-8
CrossRef
Google Scholar
Weller, M., et al.: European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas, June 2017. https://doi.org/10.1016/S1470-2045(17)30194-8
Xue, Z., Xin, B., Wang, D., Wang, X.: Radiomics-enhanced multi-task neural network for non-invasive glioma subtyping and segmentation. In: Mohy-ud-Din, H., Rathore, S. (eds.) RNO-AI 2019. LNCS, vol. 11991, pp. 81–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40124-5_9
CrossRef
Google Scholar