Skip to main content

A Framework for Concurrent Contact-Tracing and Digital Evidence Analysis in Heterogeneous Environments

  • Conference paper
  • First Online:
Innovations in Smart Cities Applications Volume 4 (SCA 2020)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 183))

Abstract

The multiple functionalities of mobile devices have allowed them to be used for contact-tracing especially with the emergence of an infectious pandemic, for example, in a smart city. This has been experienced, for example, in COVID-19 cases where propagation of infections may not be controlled effectively. Given that data is exchanged between parties it becomes important to have a focus on how this data can be used as a contact trace mechanism. This contract trace mechanism can also provide Potential Digital Evidence (PDE) that can aid to form an objective hypothesis that could be employed during litigation in the event of a suspicious infection, or when a security incident is detected. This paper, therefore, proposes an iterative Concurrent Contact-Tracing (CCT) framework based on digital evidence from mobile devices in heterogeneous environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tassone, C., Martini, B., Choo, K.K.R., Slay, J., et al.: Mobile device forensics: a snapshot. Trends Issues Crime Crim. Justice 460, 1 (2013)

    Google Scholar 

  2. Liang, T.-P., Huang, C.-W., Yeh, Y.-H., Lin, B.: Adoption of mobile technology in business: a fit-viability model. Indu. Manag. Data Syste. (2007)

    Google Scholar 

  3. Quick, D., Choo, K.-K.R.: Pervasive social networking forensics: intelligence and evidence from mobile device extracts. J. Netw. Comput. Appl. 86, 24–33 (2017)

    Article  Google Scholar 

  4. Omeleze, S., Venter, H.S.: Testing the harmonised digital forensic investigation process model-using an android mobile phone. In: 2013 Information Security for South Africa, pp. 1–8. IEEE (2013)

    Google Scholar 

  5. Kebande, V.R., Ray, I.: A generic digital forensic investigation framework for Internet of Things (IoT). In: IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud) (2016)

    Google Scholar 

  6. Omeleze, S., Venter, H.S.: Proof of concept of the online neighbourhood watch system. In: International Conference on e-Infrastructure and e-Services for Developing Countries, pp. 78–93. Springer (2015)

    Google Scholar 

  7. Omeleze, S., Venter, H.S.: Digital forensic application requirements specification process. Aust. J. Forensic Sci. 51(4), 371–394 (2019)

    Article  Google Scholar 

  8. Valjarevic, A., Venter, H.S.: Towards a digital forensic readiness framework for public key infrastructure systems. In: 2011 Information Security for South Africa, pp. 1–10. IEEE (2011)

    Google Scholar 

  9. Kebande, V.R., Venter, H.S.: Novel digital forensic readiness technique in the cloud environment. Aust. J. Forensic Sci. 50(5), 552–591 (2018)

    Article  Google Scholar 

  10. Kebande, V.R., Venter, H.S.: On digital forensic readiness in the cloud using a distributed agent-based solution: issues and challenges. Aust. J. Forensic Sci. 50(2), 209–238 (2018)

    Article  Google Scholar 

  11. Kent, K., Chevalier, S., Grance, T., Dang, H.: Guide to integrating forensic techniques into incident response. NIST Spec. Publ. 10(14), 800–86 (2006)

    Google Scholar 

  12. ISO/IEC: 27043: 2015 international standard, information technology – security techniques – incident investigation principles and processes, vol. 1, no. 1, pp. 1–30. ISO.org (2015)

    Google Scholar 

  13. Kebande, V., Venter, H.: A functional architecture for cloud forensic readiness large-scale potential digital evidence analysis. In: European Conference on Cyber Warfare and Security, p. 373, Academic Conferences International Limited (2015)

    Google Scholar 

  14. Kebande, V.R., Venter, H.S.: Adding event reconstruction to a cloud forensic readiness model. In: 2015 Information Security for South Africa (ISSA), pp. 1–9. IEEE (2015)

    Google Scholar 

  15. Kebande, V.R., Venter, H.S.: A cloud forensic readiness model using a botnet as a service. In: The International Conference on Digital Security and Forensics (DigitalSec2014), pp. 23–32, The Society of Digital Information and Wireless Communication, Ostrava (2014)

    Google Scholar 

  16. Kebande, V.R., Karie, N.M., Omeleze, S.: A mobile forensic readiness model aimed at minimising cyber bullying. Int. J. Comput. Appl. 140(1), 28–33 (2016)

    Google Scholar 

  17. Aker, J.C., Mbiti, I.M.: Mobile phones and economic development in Africa. J. Econ. Perspect. 24(3), 207–32 (2010)

    Article  Google Scholar 

  18. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application certification. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 235–245 (2009)

    Google Scholar 

  19. Casey, E.: Digital Evidence and Computer Crime: Forensic Science, Computers, and The Internet. Academic Press (2011)

    Google Scholar 

  20. John, J.L.: Digital forensics and preservation. DPC Technol. Watch Rep. 12(3), 1–53 (2012)

    Google Scholar 

  21. Papadopoulos, S., Snail, S.: Cyberlaw@ SA III: the law of the Internet in South Africa. Van Schaik Pretoria (2012)

    Google Scholar 

  22. Ikuesan, A.R., Venter, H.S.: Digital forensic readiness framework based on behavioral-biometrics for user attribution. In: 2017 IEEE Conference on Application, Information and Network Security (AINS), pp. 54–59. IEEE (2017)

    Google Scholar 

  23. Watney, M.: Admissibility of electronic evidence in criminal proceedings: an outline of the south African legal position. J. Inf. Law Technol. 1, 1–10 (2009)

    Article  Google Scholar 

  24. Kales, D., Rechberger, C., Schneider, T., Senker, M., Weinert, C.: Mobile private contact discovery at scale. In: 28th USENIX Security Symposium (USENIX Security 19), pp. 1447–1464 (2019)

    Google Scholar 

  25. De Cristofaro, E., Manulis, M., Poettering, B.: Private discovery of common social contacts. Int. J. Inf. Secur. 12(1), 49–65 (2013)

    Article  Google Scholar 

  26. Li, D., Sinha, P.: RBTP: low-power mobile discovery protocol through recursive binary time partitioning. IEEE Trans. Mob. Comput. 13(2), 263–273 (2012)

    Article  Google Scholar 

  27. Vieira, M.R., Frias-Martinez, V., Oliver, N., Frias-Martinez, E.: Characterizing dense urban areas from mobile phone-call data: discovery and social dynamics. In: 2010 IEEE Second International Conference on Social Computing, pp. 241–248. IEEE (2010)

    Google Scholar 

  28. Berke, A., Bakker, M., Vepakomma, P., Raskar, R., Larson, K., Pentland, A., Assessing disease exposure risk with location histories and protecting privacy: a cryptographic approach in response to a global pandemic arXiv preprint arXiv:2003.14412 (2020)

  29. Vinuesa, R., Theodorou, A., Battaglini, M., Dignum, V.: A socio-technical framework for digital contact tracing, arXiv preprint arXiv:2005.08370 (2020)

  30. Greiner, A.L., Angelo, K.M., McCollum, A.M., Mirkovic, K., Arthur, R., Angulo, F.J.: Addressing contact tracing challenges-critical to halting Ebola virus disease transmission. Int. J. Infect. Dis. 41, 53–55 (2015)

    Article  Google Scholar 

  31. Scantamburlo, T., Cortés, A., Dewitte, P., Van Der Eycken, D., Billa, V., Duysburgh, P., Laenens, W.: Covid-19 and contact tracing apps: a review under the European legal framework, arXiv preprint arXiv:2004.14665 (2020)

  32. Karie, N.M., Kebande, V.R., Venter, H., Choo, K.-K.R.: On the importance of standardising the process of generating digital forensic reports. Forensic Sci. Int.: Rep. 1, 100008 (2019)

    Google Scholar 

  33. Singh, A., Ikuesan, R., Venter, H.S.: Digital forensic readiness framework for ransomware investigation. In: International Conference on Digital Forensics and Cyber Crime, pp. 91–105. Springer (2018)

    Google Scholar 

  34. Xu, H., Zhang, L., Onireti, O., Fang, Y., Buchanan, W.B., Imran, M.A.: Beeptrace: blockchain-enabled privacy-preserving contact tracing for covid-19 pandemic and beyond, arXiv preprint arXiv:2005.10103 (2020)

  35. Redmiles, E.M.: User concerns & tradeoffs in technology-facilitated contact tracing, arXiv preprint arXiv:2004.13219 (2020)

  36. Lunz, D., Batt, G., Ruess, J.: To isolate, or not to isolate: a theoretical framework for disease control via contact tracing, medRxiv (2020)

    Google Scholar 

  37. Cencetti, G., Santin, G., Longa, A., Pigani, E., Barrat, A., Cattuto, C., Lehmann, S., Lepri, B.: Using real-world contact networks to quantify the effectiveness of digital contact tracing and isolation strategies for covid-19 pandemic, medRxiv (2020)

    Google Scholar 

  38. Sun, R., Wang, W., Xue, M., Tyson, G., Camtepe, S., Ranasinghe, D.: Vetting security and privacy of global covid-19 contact tracing applications, arXiv preprint arXiv:2006.10933 (2020)

  39. Li, J., Guo, X.: Covid-19 contact-tracing apps: a survey on the global deployment and challenges, arXiv preprint, arXiv:2005.03599 (2020)

  40. Bianconi, G., Sun, H., Rapisardi, G., Arenas, A.: A message-passing approach to epidemic tracing and mitigation with apps. arXiv preprint arXiv:2007.05277 (2020)

  41. Nielsen, B.F., Sneppen, K., Simonsen, L., Mathiesen, J.: Heterogeneity is essential for contact tracing, medRxiv (2020)

    Google Scholar 

  42. Yasaka, T.M., Lehrich, B.M., Sahyouni, R.: Peer-to-peer contact tracing: development of a privacy-preserving smartphone app. JMIR mHealth uHealth 8(4), e18936 (2020)

    Article  Google Scholar 

  43. Collins, A.: Covid-19 contact tracing: efficacy and privacy, Technical report, EPFL (2020)

    Google Scholar 

  44. Kebande, V.R., Venter, H.S.: A comparative analysis of digital forensic readiness models using CFRaaS as a baseline. Wiley Interdiscip. Rev.: Forensic Sci. 1(6), e1350 (2019)

    Google Scholar 

  45. Watkins, H.: Daubert v. merrell dow pharmaceuticals, inc.: general acceptance rejected, Santa Clara Computer & High Tech. LJ, vol. 10, p. 259 (1994)

    Google Scholar 

  46. Omeleze, S., Venter, H.: A model for access management of potential digital evidence. In: International Conference on Cyber Warfare and Security, p. 491, Academic Conferences International Limited (2015)

    Google Scholar 

  47. Kebande, V.R., Karie, N.M., Ikuesan, R.A., Venter, H.S.: Ontology-driven perspective of CFRaaS, Wiley Interdiscip. Rev.: Forensic Sci. e1372

    Google Scholar 

  48. Omeleze, S., Venter, H.S.: Towards a model for acquiring digital evidence using mobile devices.. In: INC, pp. 173–186, Plymouth, UK (2014)

    Google Scholar 

  49. Ikuesan, A.R., Venter, H.S.: Digital behavioral-fingerprint for user attribution in digital forensics: are we there yet? Digit. Invest. 30, 73–89 (2019)

    Article  Google Scholar 

  50. Ernsberger, D., Ikuesan, R.A., Venter, S.H., Zugenmaier, A.: A web-based mouse dynamics visualization tool for user attribution in digital forensic readiness. In: International Conference on Digital Forensics and Cyber Crime, pp. 64–79. Springer (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor R. Kebande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baror, S.O., Venter, H.S., Kebande, V.R. (2021). A Framework for Concurrent Contact-Tracing and Digital Evidence Analysis in Heterogeneous Environments. In: Ben Ahmed, M., Rakıp Karaș, İ., Santos, D., Sergeyeva, O., Boudhir, A.A. (eds) Innovations in Smart Cities Applications Volume 4. SCA 2020. Lecture Notes in Networks and Systems, vol 183. Springer, Cham. https://doi.org/10.1007/978-3-030-66840-2_90

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66840-2_90

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66839-6

  • Online ISBN: 978-3-030-66840-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics