Skip to main content

L2-Constrained RemNet for Camera Model Identification and Image Manipulation Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12538))

Included in the following conference series:

Abstract

Source camera model identification (CMI) and image manipulation detection are of paramount importance in image forensics. In this paper, we propose an L2-constrained Remnant Convolutional Neural Network (L2-constrained RemNet) for performing these two crucial tasks. The proposed network architecture consists of a dynamic preprocessor block and a classification block. An L2 loss is applied to the output of the preprocessor block, and categorical crossentropy loss is calculated based on the output of the classification block. The whole network is trained in an end-to-end manner by minimizing the total loss, which is a combination of the L2 loss and the categorical crossentropy loss. Aided by the L2 loss, the data-adaptive preprocessor learns to suppress the unnecessary image contents and assists the classification block in extracting robust image forensics features. We train and test the network on the Dresden database and achieve an overall accuracy of 98.15%, where all the test images are from devices and scenes not used during training to replicate practical applications. The network also outperforms other state-of-the-art CNNs even when the images are manipulated. Furthermore, we attain an overall accuracy of 99.68% in image manipulation detection, which implies that it can be used as a general-purpose network for image forensic tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alneyadi, S., Sithirasenan, E., Muthukkumarasamy, V.: A survey on data leakage prevention systems. J. Netw. Comput. Appl. 62, 137–152 (2016)

    Article  Google Scholar 

  2. Barni, M., Costanzo, A., Nowroozi, E., Tondi, B.: CNN-based detection of generic contrast adjustment with jpeg post-processing. In: Proceedings of the IEEE International Conference on Image Process (ICIP), pp. 3803–3807, October 2018. https://doi.org/10.1109/ICIP.2018.8451698

  3. Bayar, B., Stamm, M.C.: Augmented convolutional feature maps for robust CNN-based camera model identification. In: Proceedings of the IEEE International Conference on Image Processing, (ICIP), pp. 4098–4102. IEEE (2017)

    Google Scholar 

  4. Bayar, B., Stamm, M.C.: Design principles of convolutional neural networks for multimedia forensics. Electron. Imaging 2017(7), 77–86 (2017)

    Article  Google Scholar 

  5. Bayar, B., Stamm, M.C.: Constrained convolutional neural networks: A new approach towards general purpose image manipulation detection. IEEE Trans. Inf. Forensics Secur. 13(11), 2691–2706 (2018)

    Article  Google Scholar 

  6. Bayram, S., Sencar, H., Memon, N., Avcibas, I.: Source camera identification based on CFA interpolation. In: Proceedings of the IEEE International Conference on Image Processing, (ICIP), vol. 3, pp. III–69. IEEE (2005)

    Google Scholar 

  7. Bianchi, T., Piva, A.: Image forgery localization via block-grained analysis of JPEG artifacts. IEEE Trans. Inf. Forensics Secur. 7(3), 1003–1017 (2012)

    Article  Google Scholar 

  8. Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E.J., Tubaro, S.: First steps toward camera model identification with convolutional neural networks. IEEE Signal Process. Lett. 24(3), 259–263 (2017)

    Article  Google Scholar 

  9. Boroumand, M., Fridrich, J.: Deep learning for detecting processing history of images. Electron. Imaging 2018, 213 (2018)

    Article  Google Scholar 

  10. Cao, H., Kot, A.C.: Accurate detection of demosaicing regularity for digital image forensics. IEEE Trans. Inf. Forensics Secur. 4(4), 899–910 (2009)

    Article  Google Scholar 

  11. Chen, C., Stamm, M.C.: Camera model identification framework using an ensemble of demosaicing features. In: Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2015)

    Google Scholar 

  12. Chen, J., Kang, X., Liu, Y., Wang, Z.J.: Median filtering forensics based on convolutional neural networks. IEEE Signal Process. Lett. 22(11), 1849–1853 (2015)

    Article  Google Scholar 

  13. Chen, M., Fridrich, J., Goljan, M., Lukás, J.: Determining image origin and integrity using sensor noise. IEEE Trans. Inf. Forensics Secur. 3(1), 74–90 (2008)

    Article  Google Scholar 

  14. Chen, Y., Kang, X., Shi, Y.Q., Wang, Z.J.: A multi-purpose image forensic method using densely connected convolutional neural networks. J. Real-Time Image Process. 16(3), 725–740 (2019)

    Article  Google Scholar 

  15. Chen, Y., Kang, X., Wang, Z.J., Zhang, Q.: Densely connected convolutional neural network for multi-purpose image forensics under anti-forensic attacks. In: Proceedings of the 6th ACM Workshop on Information Hiding Multimedia Security, pp. 91–96. ACM, New York (2018). https://doi.org/10.1145/3206004.3206013

  16. Dirik, A.E., Sencar, H.T., Memon, N.: Source camera identification based on sensor dust characteristics. In: Proceedings of the IEEE Workshop on Signal Processing Applications for Public Security and Forensics, pp. 1–6. IEEE (2007)

    Google Scholar 

  17. Fan, W., Wang, K., Cayre, F.: General-purpose image forensics using patch likelihood under image statistical models. In: 2015 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2015)

    Google Scholar 

  18. Farid, H.: Image forgery detection. IEEE Signal Process. Mag. 26(2), 16–25 (2009)

    Article  Google Scholar 

  19. Feng, X., Cox, I.J., Doerr, G.: Normalized energy density-based forensic detection of resampled images. IEEE Trans. Multimedia 14(3), 536–545 (2012)

    Article  Google Scholar 

  20. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  21. Fridrich, J., Lukas, J., Goljan, M.: Digital camera identification from sensor noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)

    Article  Google Scholar 

  22. Gloe, T.: Feature-based forensic camera model identification. In: Shi, Y.Q., Katzenbeisser, S. (eds.) Transactions on Data Hiding and Multimedia Security VIII. LNCS, vol. 7228, pp. 42–62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31971-6_3

    Chapter  Google Scholar 

  23. Gloe, T., Böhme, R.: The Dresden image database for benchmarking digital image forensics. J. Digit. Forensic Pract. 3, 150–159 (2010)

    Article  Google Scholar 

  24. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  25. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269, July 2017. https://doi.org/10.1109/CVPR.2017.243

  26. Kharrazi, M., Sencar, H.T., Memon, N.: Blind source camera identification. In: Proceedings of the IEEE International Conference on Image Processing, (ICIP), vol. 1, pp. 709–712. IEEE (2004)

    Google Scholar 

  27. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  28. Kirchner, M., Gloe, T.: Forensic camera model identification. In: Proceedings of the WOL Handbook of Digital Forensics of Multimedia Data and Devices, pp. 329–374 (2015)

    Google Scholar 

  29. Lukas, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)

    Article  Google Scholar 

  30. Marra, F., Poggi, G., Sansone, C., Verdoliva, L.: A study of co-occurrence based local features for camera model identification. Multimedia Tools Appl. 76(4), 4765–4781 (2017). https://doi.org/10.1007/s11042-016-3663-0

    Article  Google Scholar 

  31. Neelamani, R., De Queiroz, R., Fan, Z., Dash, S., Baraniuk, R.G.: JPEG compression history estimation for color images. IEEE Trans. Image Process. 15(6), 1365–1378 (2006)

    Article  Google Scholar 

  32. Pevny, T., Bas, P., Fridrich, J.: Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 5(2), 215–224 (2010)

    Article  Google Scholar 

  33. Piva, A.: An overview on image forensics. Proc. ISRN Signal Process. 2013, 496701 (2013)

    Google Scholar 

  34. Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Trans. Signal Process. 53(2), 758–767 (2005)

    Article  MathSciNet  Google Scholar 

  35. Qiu, X., Li, H., Luo, W., Huang, J.: A universal image forensic strategy based on steganalytic model. In: Proceedings of the 2nd ACM Workshop on Information Hiding and Multimedia Security, pp. 165–170 (2014)

    Google Scholar 

  36. Rafi, A.M., et al.: Application of DenseNet in camera model identification and post-processing detection. In: CVPR Workshops, pp. 19–28 (2019)

    Google Scholar 

  37. Rafi, A.M., Tonmoy, T.I., Kamal, U., Hoque, R., Hasan, M., et al.: RemNet: remnant convolutional neural network for camera model identification. arXiv preprint arXiv:1902.00694 (2019)

  38. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  39. Srivastava, R.K., Greff, K., Schmidhuber, J.: Highway networks. arXiv preprint arXiv:1505.00387 (2015)

  40. Stamm, M.C., Liu, K.R.: Forensic detection of image manipulation using statistical intrinsic fingerprints. IEEE Trans. Inf. Forensics Secur. 5(3), 492–506 (2010)

    Article  Google Scholar 

  41. Stamm, M.C., Wu, M., Liu, K.R.: Information forensics: an overview of the first decade. IEEE Access 1, 167–200 (2013)

    Article  Google Scholar 

  42. Sun, Y., Wang, X., Tang, X.: Deeply learned face representations are sparse, selective, and robust. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2892–2900 (2015)

    Google Scholar 

  43. Thai, T.H., Cogranne, R., Retraint, F.: Camera model identification based on the heteroscedastic noise model. IEEE Trans. Image Process. 23(1), 250–263 (2014)

    Article  MathSciNet  Google Scholar 

  44. Tong, T., Li, G., Liu, X., Gao, Q.: Image super-resolution using dense skip connections. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4799–4807 (2017)

    Google Scholar 

  45. Tuama, A., Comby, F., Chaumont, M.: Camera model identification with the use of deep convolutional neural networks. In: Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2016)

    Google Scholar 

  46. Wen, Y., Li, Z., Qiao, Y.: Latent factor guided convolutional neural networks for age-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4893–4901 (2016)

    Google Scholar 

  47. Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31

    Chapter  Google Scholar 

  48. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  49. Yang, P., Baracchi, D., Ni, R., Zhao, Y., Argenti, F., Piva, A.: A survey of deep learning-based source image forensics. J. Imaging 6(3), 9 (2020)

    Article  Google Scholar 

  50. Yang, P., Zhao, W., Ni, R., Zhao, Y.: Source camera identification based on content-adaptive fusion network. Pattern Recogn. Lett. 119, 195–204 (2019)

    Article  Google Scholar 

  51. Yao, H., Wang, S., Zhang, X.: Detect piecewise linear contrast enhancement and estimate parameters using spectral analysis of image histogram (2009)

    Google Scholar 

  52. Yao, H., Qiao, T., Xu, M., Zheng, N.: Robust multi-classifier for camera model identification based on convolution neural network. IEEE Access 6, 24973–24982 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kamrul Hasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rafi, A.M., Wu, J., Hasan, M.K. (2020). L2-Constrained RemNet for Camera Model Identification and Image Manipulation Detection. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12538. Springer, Cham. https://doi.org/10.1007/978-3-030-66823-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66823-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66822-8

  • Online ISBN: 978-3-030-66823-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics