Skip to main content

Conditional Adversarial Camera Model Anonymization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 Workshops (ECCV 2020)

Abstract

The model of camera that was used to capture a particular photographic image (model attribution) is typically inferred from high-frequency model-specific artifacts present within the image. Model anonymization is the process of transforming these artifacts such that the apparent capture model is changed. We propose a conditional adversarial approach for learning such transformations. In contrast to previous works, we cast model anonymization as the process of transforming both high and low spatial frequency information. We augment the objective with the loss from a pre-trained dual-stream model attribution classifier, which constrains the generative network to transform the full range of artifacts. Quantitative comparisons demonstrate the efficacy of our framework in a restrictive non-interactive black-box setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/jeroneandrews/cama.

  2. 2.

    We refer the reader to [25] for details on this denoising filter.

  3. 3.

    Recall that all anonymization methods are trained on \((x,y)\sim q_{\mathrm {data}}(x,\mathbb {N}_{6})\).

  4. 4.

    Note that \(\mathbb {N}_{12} \setminus \mathbb {N}_{6}=\{7,\dots ,12\}\).

References

  1. Arandjelović, R., Zisserman, A.: Object discovery with a copy-pasting GAN. arXiv preprint arXiv:1905.11369 (2019)

  2. Barni, M., Kallas, K., Nowroozi, E., Tondi, B.: On the transferability of adversarial examples against CNN-based image forensics. In: ICASSP 2019 – 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8286–8290. IEEE (2019)

    Google Scholar 

  3. Bayar, B., Stamm, M.C.: A deep learning approach to universal image manipulation detection using a new convolutional layer. In: Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp. 5–10. ACM (2016)

    Google Scholar 

  4. Bayar, B., Stamm, M.C.: Design principles of convolutional neural networks for multimedia forensics. Electron. Imaging 2017(7), 77–86 (2017)

    Article  Google Scholar 

  5. Bayar, B., Stamm, M.C.: Towards open set camera model identification using a deep learning framework. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2007–2011. IEEE (2018)

    Google Scholar 

  6. Bayram, S., Sencar, H., Memon, N., Avcibas, I.: Source camera identification based on CFA interpolation. In: IEEE International Conference on Image Processing 2005, vol. 3, p. III-69. IEEE (2005)

    Google Scholar 

  7. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6228–6237 (2018)

    Google Scholar 

  8. Böhme, R., Kirchner, M.: Counter-forensics: attacking image forensics. In: Sencar, H., Memon, N. (eds.) Digital Image Forensics, pp. 327–366. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0757-7_12

    Chapter  Google Scholar 

  9. Bondi, L., Baroffio, L., Güera, D., Bestagini, P., Delp, E.J., Tubaro, S.: First steps toward camera model identification with convolutional neural networks. IEEE Signal Process. Lett. 24(3), 259–263 (2016)

    Article  Google Scholar 

  10. Bonettini, N., et al.: Fooling PRNU-based detectors through convolutional neural networks. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 957–961. IEEE (2018)

    Google Scholar 

  11. Bonettini, N., Güera, D., Bondi, L., Bestagini, P., Delp, E.J., Tubaro, S.: Image anonymization detection with deep handcrafted features. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 2304–2308. IEEE (2019)

    Google Scholar 

  12. Caldwell, M., Andrews, J.T.A., Tanay, T., Griffin, L.D.: AI-enabled future crime. Crime Sci. 9(1), 1–13 (2020). https://doi.org/10.1186/s40163-020-00123-8

    Article  Google Scholar 

  13. Chen, C., Stamm, M.C.: Camera model identification framework using an ensemble of demosaicing features. In: 2015 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2015)

    Google Scholar 

  14. Chen, C., Zhao, X., Stamm, M.C.: MISLGAN: an anti-forensic camera model falsification framework using a generative adversarial network. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 535–539. IEEE (2018)

    Google Scholar 

  15. Chen, C., Zhao, X., Stamm, M.C.: Generative adversarial attacks against deep-learning-based camera model identification. IEEE Trans. Inf. Forensics Secur. (2019)

    Google Scholar 

  16. Chen, T., Zhai, X., Ritter, M., Lucic, M., Houlsby, N.: Self-supervised GANs via auxiliary rotation loss. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 12154–12163 (2019)

    Google Scholar 

  17. Chesney, B., Citron, D.: Deep fakes: a looming challenge for privacy, democracy, and national security. Calif. L. Rev. 107, 1753 (2019)

    Google Scholar 

  18. Choi, K.S., Lam, E.Y., Wong, K.K.: Source camera identification by JPEG compression statistics for image forensics. In: TENCON 2006 – 2006 IEEE Region 10 Conference, pp. 1–4. IEEE (2006)

    Google Scholar 

  19. Choi, K.S., Lam, E.Y., Wong, K.K.: Source camera identification using footprints from lens aberration. In: Digital Photography II, vol. 6069, pp. 172–179 (2006)

    Google Scholar 

  20. Cozzolino, D., Thies, J., Rössler, A., Nießner, M., Verdoliva, L.: SpoC: spoofing camera fingerprints. arXiv preprint arXiv:1911.12069 (2019)

  21. Dirik, A.E., Karaküçük, A.: Forensic use of photo response non-uniformity of imaging sensors and a counter method. Opt. Express 22(1), 470–482 (2014)

    Article  Google Scholar 

  22. Dirik, A.E., Sencar, H.T., Memon, N.: Analysis of seam-carving-based anonymization of images against PRNU noise pattern-based source attribution. IEEE Trans. Inf. Forensics Secur. 9(12), 2277–2290 (2014)

    Article  Google Scholar 

  23. Entrieri, J., Kirchner, M.: Patch-based desynchronization of digital camera sensor fingerprints. Electron. Imaging 2016(8), 1–9 (2016)

    Article  Google Scholar 

  24. Filler, T., Fridrich, J., Goljan, M.: Using sensor pattern noise for camera model identification. In: 2008 15th IEEE International Conference on Image Processing, pp. 1296–1299. IEEE (2008)

    Google Scholar 

  25. Fridrich, J.: Digital image forensics. IEEE Signal Process. Mag. 26(2), 26–37 (2009)

    Article  Google Scholar 

  26. Fridrich, J.: Sensor defects in digital image forensic. In: Sencar, H., Memon, N. (eds.) Digital Image Forensics, pp. 179–218. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0757-7_6

    Chapter  Google Scholar 

  27. Geirhos, R., et al.: Shortcut learning in deep neural networks. arXiv preprint arXiv:2004.07780 (2020)

  28. Geradts, Z.J., Bijhold, J., Kieft, M., Kurosawa, K., Kuroki, K., Saitoh, N.: Methods for identification of images acquired with digital cameras. In: Enabling Technologies for Law Enforcement and Security, vol. 4232, pp. 505–512. International Society for Optics and Photonics (2001)

    Google Scholar 

  29. Gloe, T.: Feature-based forensic camera model identification. In: Shi, Y.Q., Katzenbeisser, S. (eds.) Transactions on Data Hiding and Multimedia Security VIII. LNCS, vol. 7228, pp. 42–62. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31971-6_3

    Chapter  Google Scholar 

  30. Gloe, T., Böhme, R.: The ‘Dresden Image Database’ for benchmarking digital image forensics. In: Proceedings of the 2010 ACM Symposium on Applied Computing, pp. 1584–1590. ACM (2010)

    Google Scholar 

  31. Gloe, T., Kirchner, M., Winkler, A., Böhme, R.: Can we trust digital image forensics? In: Proceedings of the 15th ACM International Conference on Multimedia, pp. 78–86. ACM (2007)

    Google Scholar 

  32. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  33. Gragnaniello, D., Marra, F., Poggi, G., Verdoliva, L.: Analysis of adversarial attacks against CNN-based image forgery detectors. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 967–971. IEEE (2018)

    Google Scholar 

  34. Güera, D., Wang, Y., Bondi, L., Bestagini, P., Tubaro, S., Delp, E.J.: A counter-forensic method for CNN-based camera model identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 28–35 (2017)

    Google Scholar 

  35. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  36. Holst, G.C.: CCD arrays, cameras, and displays, 2nd edn. Society of Photo Optical (1998)

    Google Scholar 

  37. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  38. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  39. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  40. Karaküçük, A., Dirik, A.E.: Adaptive photo-response non-uniformity noise removal against image source attribution. Digit. Investig. 12, 66–76 (2015)

    Article  Google Scholar 

  41. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  42. Kharrazi, M., Sencar, H.T., Memon, N.: Blind source camera identification. In: 2004 International Conference on Image Processing, ICIP 2004, vol. 1, pp. 709–712. IEEE (2004)

    Google Scholar 

  43. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  44. Kirchner, M., Gloe, T.: Forensic camera model identification. In: Handbook of Digital Forensics of Multimedia Data and Devices, pp. 329–374 (2015)

    Google Scholar 

  45. Kuzin, A., Fattakhov, A., Kibardin, I., Iglovikov, V.I., Dautov, R.: Camera model identification using convolutional neural networks. In: 2018 IEEE International Conference on Big Data (Big Data), pp. 3107–3110. IEEE (2018)

    Google Scholar 

  46. Lukáš, J., Fridrich, J., Goljan, M.: Detecting digital image forgeries using sensor pattern noise. In: Security, Steganography, and Watermarking of Multimedia Contents VIII, vol. 6072, p. 60720Y. International Society for Optics and Photonics (2006)

    Google Scholar 

  47. Lukáš, J., Fridrich, J., Goljan, M.: Digital camera identification from sensor pattern noise. IEEE Trans. Inf. Forensics Secur. 1(2), 205–214 (2006)

    Article  Google Scholar 

  48. Mandelli, S., Bondi, L., Lameri, S., Lipari, V., Bestagini, P., Tubaro, S.: Inpainting-based camera anonymization. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1522–1526. IEEE (2017)

    Google Scholar 

  49. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  50. Marra, F., Gragnaniello, D., Verdoliva, L.: On the vulnerability of deep learning to adversarial attacks for camera model identification. Sig. Process. Image Commun. 65, 240–248 (2018)

    Article  Google Scholar 

  51. Marra, F., Poggi, G., Sansone, C., Verdoliva, L.: Evaluation of residual-based local features for camera model identification. In: Murino, V., Puppo, E., Sona, D., Cristani, M., Sansone, C. (eds.) ICIAP 2015. LNCS, vol. 9281, pp. 11–18. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23222-5_2

    Chapter  Google Scholar 

  52. Marra, F., Poggi, G., Sansone, C., Verdoliva, L.: A study of co-occurrence based local features for camera model identification. Multimed. Tools Appl. 76(4), 4765–4781 (2016). https://doi.org/10.1007/s11042-016-3663-0

    Article  Google Scholar 

  53. Mathieu, M.F., Zhao, J.J., Zhao, J., Ramesh, A., Sprechmann, P., LeCun, Y.: Disentangling factors of variation in deep representation using adversarial training. In: Advances in Neural Information Processing Systems, pp. 5040–5048 (2016)

    Google Scholar 

  54. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  55. Perarnau, G., Van De Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional GANs for image editing. arXiv preprint arXiv:1611.06355 (2016)

  56. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016)

  57. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  58. The IEEE Signal Processing Society: IEEE Signal Processing Cup 2018: Forensic Camera Model Identification Challenge (2018). https://www.kaggle.com/c/sp-society-camera-model-identification

  59. Szegedy, C., et al.: Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199 (2013)

  60. Tuama, A., Comby, F., Chaumont, M.: Source camera model identification using features from contaminated sensor noise. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Echizen, I. (eds.) IWDW 2015. LNCS, vol. 9569, pp. 83–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31960-5_8

    Chapter  Google Scholar 

  61. Tuama, A., Comby, F., Chaumont, M.: Camera model identification with the use of deep convolutional neural networks. In: 2016 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2016)

    Google Scholar 

  62. Wang, Z., Tang, X., Luo, W., Gao, S.: Face aging with identity-preserved conditional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7939–7947 (2018)

    Google Scholar 

  63. Xu, G., Shi, Y.Q.: Camera model identification using local binary patterns. In: 2012 IEEE International Conference on Multimedia and Expo, pp. 392–397. IEEE (2012)

    Google Scholar 

  64. Yang, H., Huang, D., Wang, Y., Jain, A.K.: Learning face age progression: a pyramid architecture of GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 31–39 (2018)

    Google Scholar 

  65. Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36

    Chapter  Google Scholar 

  66. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  67. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in Neural Information Processing Systems, pp. 465–476 (2017)

    Google Scholar 

Download references

Acknowledgments

JTAA is supported by the Royal Academy of Engineering (RAEng) and the Office of the Chief Science Adviser for National Security under the UK Intelligence Community Postdoctoral Fellowship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerone T. A. Andrews .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16744 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andrews, J.T.A., Zhang, Y., Griffin, L.D. (2020). Conditional Adversarial Camera Model Anonymization. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science(), vol 12538. Springer, Cham. https://doi.org/10.1007/978-3-030-66823-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-66823-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-66822-8

  • Online ISBN: 978-3-030-66823-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics