Skip to main content

Part of the book series: Springer Hydrogeology ((SPRINGERHYDRO))

  • 423 Accesses

Abstract

Climate impacts groundwater quantity mainly through its influences on recharge and the demand for groundwater. Precipitation either infiltrates into the soil, runs off, or ponds on land surface and is lost to subsequent evaporation. Infiltrated water may either percolate to the water table and become aquifer recharge, be held in the soil under capillary pressure as soil moisture, be lost to evaporation from the soil or transpiration by vegetation (referred to collectively as evapotranspiration), or may flow in the unsaturated zone and later discharge to surface waters or land surface (interflow). Groundwater recharge rates are a complex function of both the intensity and duration of rainfall events, soil moisture content, and land surface and soil properties that control initial and equilibrium infiltration rates. The relationships between mean annual rainfall, available water, and aquifer recharge are not linear. Climate change can impact the demand side of the aquifer budgets by increasing the demand for water in general or by reducing the amount of available surface water prompting a shift toward more groundwater pumping

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration—guidelines for computing crop water requirements, FAO irrigation and drainage paper 56. Food and Agricultural Organization of the United Nations, Rome

    Google Scholar 

  • Alley WM, Leake SA (2004) A journey from safe yield to sustainability. Ground Water 42(1):12–16

    Article  PubMed  Google Scholar 

  • Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. U.S. Geological Survey Circular 1186

    Google Scholar 

  • Allison GB (1988) A review of some of the physical chemical and isotopic techniques available for estimating groundwater recharge. In: Simmers I (ed) Estimation of natural groundwater recharge. North Atlantic Treaty Organization, Scientific Affairs Division, pp 49–72

    Chapter  Google Scholar 

  • Allison GB, Gee GW, Tyler SW (1994) Vadose-zone techniques for estimating groundwater recharge in arid and semiarid regions. Soil Sci Soc Am J 58:6–14

    Article  Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21(1):167–196

    Article  Google Scholar 

  • Bourdon DJ (1977) Flow of fossil groundwater. Q J Eng Geol Hydrogeol 10:97–124

    Article  Google Scholar 

  • Bouwer H (1978) Groundwater hydrology. McGraw-Hill, New York

    Google Scholar 

  • Constantz J, Thomas CL, Zellweger G (1994) Influence of diurnal variations in stream temperature on streamflow loss and groundwater recharge. Water Resour Res 30:3253–3264

    Article  ADS  Google Scholar 

  • Curtis KJ, Schneider A (2011) Understanding the demographic implications of climate change: estimates of localized population predictions under future scenarios of sea-level rise. Popul Environ 33(1):28–54

    Article  Google Scholar 

  • Cuthbert MO, Gleeson T, Moosdorf N, Befus KM, Schneider A, Hartmann J, Lehner B (2019) Global patterns and dynamics of climate–groundwater interactions. Nat Clim Change 9(2):137–141

    Article  ADS  Google Scholar 

  • De Vries JJ, Simmers I (2002) Groundwater recharge: an overview of processes and challenges. Hydrogeol J 10:5–17

    Article  ADS  CAS  Google Scholar 

  • Deryng D, Elliott J, Folberth C, Müller C, Pugh TA, Boote KJ, Conway D, Ruane AC, Gerten D, Jones JW, Khabarov N, Olin S, Schaphoff S, Schmid E, Yange H, Rosenzweig C (2016) Regional disparities in the beneficial effects of rising CO2 concentrations on crop water productivity. Nat Clim Change 6(8):786

    Article  ADS  Google Scholar 

  • Dillon P (2005) Future management of aquifer recharge. Hydrogeol J 13:313–316

    Article  ADS  Google Scholar 

  • Downing TE, Butterfield RE, Edmonds B, Knox JW, Moss S, Piper BS, Weatherhead EK (and the CCDeW project team) (2003) Climate change and the demand for water. Stockholm Environment Institute Oxford Office, Oxford

    Google Scholar 

  • Eriksson E, Khunakasem V (1969) Chloride concentration in groundwater, recharge rate and rate of deposition of chloride in Israel Coastal Plain. J Hydrol 7:178–197

    Article  Google Scholar 

  • FAO (2009) Global agriculture towards 2050. In: High level expert forum—how to feed the world in 2050, Rome, 12–23 Oct 2009. http://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf. Accessed 26 May 2020

  • FAO (n.d.) Water use. In: QUASTAT—FAO’s global information system on water and agriculture. Food and Agriculture Organization of the United Nations. http://www.fao.org/aquastat/en/overview/methodology/water-use. Accessed May 26 2020

  • Flint AL, Flint LE, Kwicklis EM, Fabryka-Martin JT, Bodvarson GS (2002) Estimating recharge at Yucca Mountain, Nevada, USA, comparison of methods. Hydrogeol J 10:180–204

    Article  ADS  Google Scholar 

  • Gee GW, Hillel D (1988) Groundwater recharge of arid regions: review and critique of estimation methods. Hydrol Process 2:255–266

    Article  ADS  Google Scholar 

  • Gee GW, Fayer MJ, Rockhold ML, Campbell MD (1992) Variations in recharge at the Hanford Site. Northwest Sci 66:237–250

    Google Scholar 

  • Graham RW, Grimm EC (1990) Effects of global climate change on the patterns of terrestrial biological communities. Trends Ecol Evol 5(9):289–292

    Article  CAS  PubMed  Google Scholar 

  • Gurdak JJ, Hanson RT, McMahon PB, Bruce BW, NcCray JE, Thyne GD, Reedy RC (2007) Climate variability controls on unsaturated water and chemical movement, high plains aquifer, USA. Vadose Zone J 6:533–547

    Article  CAS  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball BA, Ziska LH, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103(2):351–370

    Article  Google Scholar 

  • Hauer ME (2017) Migration induced by sea-level rise could reshape the US population landscape. Nat Clim Change 7(5):321–325

    Article  ADS  Google Scholar 

  • Hauer ME, Evans JM, Mishra DR (2016) Millions projected to be at risk from sea-level rise in the continental United States. Nat Clim Change 6(7):691–695

    Article  ADS  Google Scholar 

  • Healy RW, Cook PG (2002) Using ground water levels to estimate recharge. Hydrogeol J 10(1):91–109

    Article  ADS  Google Scholar 

  • Herczeg AL, Leaney FW (2011) Review: environmental tracers in arid-zone hydrology. Hydrogeol J 19(1):17–30

    Article  ADS  CAS  Google Scholar 

  • Herrington P (1996) Climate change and the demand for water. HMSO, London

    Google Scholar 

  • Holman IP (2006) Climate change impacts on groundwater recharge—uncertainty, shortcomings, and the way forward? Hydrogeol J 14:637–647

    Article  ADS  Google Scholar 

  • Horton RE (1933) The role of infiltration in the hydrologic cycle. Trans Am Geophys Union 14:446–460

    Article  ADS  Google Scholar 

  • Horton RE (1940) An approach towards a physical interpretation of infiltration capacity. Proc Soil Soc Am 5:399–417

    Article  Google Scholar 

  • Irmak S, Haman DZ (2003) Evapotranspiration: potential or reference?. University of Florida Institute of Food and Agricultural Sciences, Gainesville

    Google Scholar 

  • Izbicki JA, Johnson RU, Kulongoski J, Predmore S (2007) Ground-water recharge from small intermittent streams in the western Mojave Desert, California. In: Stonestrom DA, Constantz J, Ferré TPA, Leake SA (eds) Ground-water recharge in the arid and semiarid southwestern United States. U.S. Geological Survey Professional Paper 1703, pp 157–184

    Google Scholar 

  • Jaggard KW, Qi A, Ober ES (2010) Possible changes to arable crop yields by 2050. Philos Trans R Soc London B: Biol Sci 365(1554):2835–2851

    Article  Google Scholar 

  • Jaynes DB (1990) Temperature variations effects on field-measured infiltration. Soil Sci Soc Am J 54:305–311

    Article  Google Scholar 

  • Jury WA, Horton R (2004) Soil physics. John Wiley & Sons, Hoboken

    Google Scholar 

  • Keese KE, Scanlon BR, Reedy RC (2005) Assessing controls on diffuse groundwater recharge using unsaturated flow modeling. Water Resour Res 41:W06010. https://doi.org/10.1029/2004WR003841

    Article  ADS  Google Scholar 

  • Keifer JC, Clayton JM, Dziegielewski B, Henderson J (2013) Changes in water use under regional climate change scenarios. Water Research Foundation, Denver

    Google Scholar 

  • Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci 105(33):11823–11826

    Article  ADS  CAS  PubMed  Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agron J 75(5):779–788

    Article  Google Scholar 

  • Lerner DN, Issar AS, Simmers I (1990) Groundwater recharge. A guide to understanding and estimating natural recharge (contributions to Hydrogeology 8). International Associations of Hydrogeologists, Kenilworth

    Google Scholar 

  • Lerner DN, Issar AS, Simmers I (1997) Groundwater recharge. In: Saether OM, de Caritat P (eds) Geochemical processes, weathering and groundwater recharge in catchments. AA Balkema, Rotterdam, pp 109–150

    Google Scholar 

  • Lloyd JW, Farag MH (1978) Fossil ground-water gradients in arid sedimentary basins. Ground Water 16(6):388–393

    Article  Google Scholar 

  • Maliva RG (2019) Anthropogenic aquifer recharge. Springer, Cham

    Google Scholar 

  • Maliva RG, Missimer TM (2012) Arid lands water evaluation and management. Springer, Berlin

    Book  Google Scholar 

  • Marshall CH, Pielke RA Sr, Steyaert LT, Willard DA (2004) The impact of anthropogenic land-cover change on the Florida peninsula sea breezes and warm season sensible weather. Mon Weather Rev 132(1):28–52

    Article  ADS  Google Scholar 

  • Monteith JL (1965) Evaporation and environment in the state and movement of water in living organisms In: Fogg GE (ed) Symposium of the society for experimental biology, vol 19, pp 205–234. Academic Press, New York

    Google Scholar 

  • NRMMC, EPHC, NHMRC (2009) Australian Guidelines for water recycling: managing health and environmental risks (Phase 2), Managed aquifer recharge (July 2009). Natural Resource Management Ministerial Council, Environment Protection and Heritage Council, National Health and Medical Research Council

    Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc London A193:120–146

    ADS  Google Scholar 

  • Penman HL (1956) Estimating evaporation. Eos, Trans Am Geophys Union 37(1):43–50

    Article  Google Scholar 

  • Pielke RA Sr, Walko RL, Steyaert LT, Vidale PL, Liston GE, Lyons WA, Chase TN (1999) The influence of anthropogenic landscape changes on weather in south Florida. Mon Weather Rev 127(7):1663–1673

    Article  ADS  Google Scholar 

  • Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92

    Article  ADS  Google Scholar 

  • Ronan AD, Prudic DE, Thodal CE, Constantz J (1998) Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream. Water Resour Res 34:2137–2153

    Article  ADS  Google Scholar 

  • Russo TA, Lall U (2017) Depletion and response of deep groundwater to climate-induced pumping variability. Nat Geosci 10(2):105–108

    Article  ADS  CAS  Google Scholar 

  • Sanford W (2002) Recharge and groundwater models: an overview. Hydrogeol J 10(1):110–120

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Sanford W (2011) Calibration of models using groundwater age. Hydrogeol J 19:13–16

    Article  ADS  Google Scholar 

  • Scanlon BR, Tyler SW, Wierenga PJ (1997) Hydrologic issues in arid, unsaturated systems and implications for contaminant transport. Rev Geophys 35:461–490

    Article  ADS  CAS  Google Scholar 

  • Scanlon BR, Healy RW, Cook PG (2002) Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol J 10:18–39

    Article  ADS  CAS  Google Scholar 

  • Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Change Biol 11:1577–1593

    Article  ADS  Google Scholar 

  • Scanlon BR, Keese KE, Flint AL, Flint LE, Gaye CB, Edmunds WM, Simmers I (2006) Global synthesis of groundwater recharge in semiarid and arid regions. Hydrol Process 20:3335–3379

    Article  ADS  CAS  Google Scholar 

  • Scanlon BR, Jolly I, Sophocleous M, Zhang L (2007) Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour Res 43:W03437. https://doi.org/10.1029/2006WR005486

    Article  ADS  CAS  Google Scholar 

  • Şen Z (2008) Wadi hydrology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Simmers I (1990) Aridity, groundwater recharge and water resources management. In: Lerner DN, Issar AS, Simmers I (eds) Groundwater recharge. A guide to understanding and estimating natural recharge (Contributions to Hydrogeology 8, pp 1–20). International Associations of Hydrogeologists, Kennilworth

    Google Scholar 

  • Simmers I (1998) Groundwater recharge: an overview of estimation “problems” and recent developments. In Robins NS (ed) Groundwater pollution, aquifer recharge and vulnerability (Special Publication 130, pp 107–115). Geological Society, London

    Google Scholar 

  • Snyder RL (1992) Equation for evaporation pan to evapotranspiration conversions. J Irrig Drainage Eng 118:977–980

    Article  Google Scholar 

  • Snyder RL, Orang M, Matyac S, Grisner ME (2005) Simplified estimation of reference evapotranspiration from pan evaporation data in California. J Irrig Drainage Eng 131:249–253

    Article  Google Scholar 

  • Sophocleous M (2004) Groundwater recharge. In: Silveira L, Wohnlich S, Usunoff EJ (eds) Encyclopedia of life support systems (EOLSS). Eolss Publishers, Oxford. http://www.eolss.net

  • Stephens DB (1996) Vadose zone hydrology. CRC Press, Boca Raton

    Google Scholar 

  • Stonestrom DA, Harrill JR (2007) Ground-water recharge in the arid and semiarid southwestern United States—climate and geologic framework. In: Stonestrom DA, Constantz J, Ferré TPA, Leake SA (eds) Ground-water recharge in the arid and semiarid southwestern United States, pp 1–27. U.S. Geological Survey Professional Paper 1703

    Google Scholar 

  • Stonestrom DA, Prudic DE, Walvoord MA, Abraham JD, Stewart-Deaker AE, Glancy PA, Constantz J, Lacniak RJ, Andrasji BJ (2007) Focused ground-water recharge in the Amargosa Desert Basin. In: Stonestrom DA, Constantz J, Ferré TPA, Leake SA (eds) Ground-water recharge in the arid and semiarid southwestern United States, pp 107–136. U.S. Geological Survey Professional Paper 1703

    Google Scholar 

  • Subyani A, Şen Z (2006) Refined chloride mass-balance method and its application in Saudi Arabia. Hydrol Process 20:4373–4380

    Article  ADS  CAS  Google Scholar 

  • Task Committee on Standardization of Reference Evapotranspiration (2005) The ASCE standardized reference evapotranspiration equation. Environmental and Water Resources Institute, American Society of Civil Engineers, Reston

    Book  Google Scholar 

  • USDA (2019) Irrigation & water use. U.S. Department of Agriculture Economic Research Service. https://www.ers.usda.gov/topics/farm-practices-management/irrigation-water-use/. Accessed 26 May 2020

  • Wheater HS (2002) Hydrological processes in arid and semi arid area. In: Wheater H, Al-Weshah RA (eds) Hydrology of wadi systems (IHP-V, Technical documents in hydrology 55, pp 5–22). UNESCO, Paris

    Google Scholar 

  • Wilson JL, Guan H (2004) Mountain-block hydrology and mountain-front recharge. In: Phillips FM, Hogan J, Scanlon B (eds) Groundwater recharge in a desert environment: the Southwestern United States. American Geophysical Union, Washington, D.C., pp 113–127

    Chapter  Google Scholar 

  • Wood WW, Rainwater KA, Thompson DB (1997) Quantifying macropore recharge: examples from a semi-arid area. Ground Water 35:1097–1106

    Article  CAS  Google Scholar 

  • Ziska LH (2000) The impact of elevated CO2 on yield loss from a C3 and C4 weed in field-grown soybean. Glob Change Biol 6:899–905

    Article  ADS  Google Scholar 

  • Ziska LH (2003a) Evaluation of yield loss in field sorghum from a C3 and C4 weed with increasing CO2. Weed Sci 51:914–918

    Article  CAS  Google Scholar 

  • Ziska LH (2003b) Evaluation of the growth response of six invasive species to past, present and future carbon dioxide concentrations. J Exp Bot 54:395–404

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH (2004) Rising carbon dioxide and weed ecology. In: Inderjit (ed) Weed biology and management, pp 159–176. Kluwer Academic, Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Maliva .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maliva, R. (2021). Climate and Groundwater Primer. In: Climate Change and Groundwater: Planning and Adaptations for a Changing and Uncertain Future. Springer Hydrogeology. Springer, Cham. https://doi.org/10.1007/978-3-030-66813-6_2

Download citation

Publish with us

Policies and ethics