Skip to main content

Crystallization, Fermionization, and Cavity-Induced Phase Transitions of Bose-Einstein Condensates

Abstract

Bose-Einstein condensates (BECs) are one of the cornerstones in the exploration of the quantum many-body physics of interacting indistinguishable particles. Here, we study them using the MultiConfigurational Time-Dependent Hartree for Bosons (MCTDHB) method implemented in the MCTDHB and MCTDH-X software packages using the Cray XC40 system Hazel Hen. In this year we investigated the physics of (i) fermionization and crystallization of ultracold strongly interacting bosons, (ii) correlations of bosons with strong dipolar interactions, (iii) cavity-induced phase transitions of ultracold bosons in high-finesse cavities, (iv) the dimensionality of the variance of BECs in annular confinements, (v) the dynamics of BECs with long-ranged interactions in a bosonic Josephson junction, (vi) the dynamics of BECs in an asymmetric bosonic Josephson junction, (vii) the variance of BECs in anharmonic traps. All these results are novel and intriguing findings that demonstrate the versatility of the MCTDHB method, its implementations in the MCTDHB and MCTDH-X software packages, and how extremely fruitful the computational resources at the HLRS system Hazel Hen were for the MCTDHB project there. For the sake of brevity, we restrict the present report to the results (i)–(iii). We conclude with an outline for possible future avenues in the development revolving around MCTDHB and MCTDH-X.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-66792-4_5
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-66792-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1

Figure reprinted from [22]

Fig. 2

Figure panels adapted from [21]

Fig. 3

The figure panels are reproduced from Ref. [20]

References

  1. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Phys. Rev. A 73, 063626 (2006)

    Google Scholar 

  2. A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Phys. Rev. Lett. 99, 030402 (2007)

    Google Scholar 

  3. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, J. Chem. Phys. 127, 154103 (2007)

    Google Scholar 

  4. O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Phys. Rev. A 77, 033613 (2008)

    Google Scholar 

  5. K. Sakmann, A.I. Streltsov, O.E. Alon, L.S. Cederbaum, Phys. Rev. Lett. 103, 220601 (2009)

    Google Scholar 

  6. A.U.J. Lode, K. Sakmann, O.E. Alon, L.S. Cederbaum, A.I. Streltsov, Phys. Rev. A 86, 063606 (2012)

    Google Scholar 

  7. A.U.J. Lode, Phys. Rev. A 93, 063601 (2016)

    Google Scholar 

  8. Multidimensional Quantum Dynamics: MCTDH Theory and Applications, edited by H.-D. Meyer, F. Gatti, G.A. Worth (Wiley-VCH, Weinheim, 2009)

    Google Scholar 

  9. K. Sakmann, Many-Body Schrödinger Dynamics of Bose-Einstein Condensates, Springer Theses (Springer, Heidelberg, 2011)

    CrossRef  Google Scholar 

  10. Quantum Gases: Finite Temperature and Non-equilibrium Dynamics, edited by N. P. Proukakis, S.A. Gardiner, M.J. Davis, M.H. Szymanska, Cold Atoms Series, Vol. 1 (Imperial College Press, London, 2013)

    Google Scholar 

  11. A.U.J. Lode, Tunneling Dynamics in Open Ultracold Bosonic Systems, Springer Theses (Springer, Heidelberg, 2015)

    MATH  Google Scholar 

  12. A.I. Streltsov, L.S. Cederbaum, O.E. Alon, K. Sakmann, A.U.J. Lode, J. Grond, O.I. Streltsova, S. Klaiman, R. Beinke, The Multiconfigurational Time-Dependent Hartree for Bosons Package, version 3.x, http://mctdhb.org, Heidelberg/Kassel (2006-Present)

  13. A.I. Streltsov, O.I. Streltsova, The multiconfigurational time-dependent Hartree for bosons laboratory, version 1.5, http://MCTDHB-lab.com

  14. A.U.J. Lode, M.C. Tsatsos, S.E. Weiner, E. Fasshauer, R. Lin, L. Papariello, P. Molignini, C.Lévêque, MCTDH-X: The time-dependent multiconfigurational Hartree for indistinguishable particles software, http://ultracold.org (2019)

  15. O.E. Alon, J. Phys.: Conf. Ser. 1206, 012009 (2019)

    Google Scholar 

  16. S.K. Haldar, O.E. Alon, New J. Phys. 21, 103037 (2019)

    Google Scholar 

  17. S.K. Haldar, O.E. Alon, J. Phys.: Conf. Ser. 1206, 012010 (2019)

    Google Scholar 

  18. O.E. Alon, L.S. Cederbaum, Chem. Phys. 515, 287 (2018)

    Google Scholar 

  19. O.E. Alon, Mol. Phys. (2019). https://doi.org/10.1080/00268976.2019.1587533

  20. R. Lin, L. Papariello, P. Molignini, R. Chitra, A.U.J. Lode, Phys. Rev. A 100, 013611 (2019)

    Google Scholar 

  21. B. Chatterjee, M.C. Tsatsos, A. U. J. Lode (2019). https://doi.org/10.1088/1367-2630/aafa93, New J. Phys. 21, 033030

  22. S. Bera, B. Chakrabarti, A. Gammal, M.C. Tsatsos, M.L. Lekala, B. Chatterjee, C. Lévêque, A. U. J. Lode (2019). http://doi.org/10.1038/s41598-019-53179-1 (in press in Scientific Reports)

  23. A.U.J. Lode, K. Sakmann, R.A. Doganov, J. Grond, O.E. Alon, A.I. Streltsov, L.S. Cederbaum, in High Performance Computing, in Science and Engineering ’13: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2013, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2013), pp. 81–92

    Google Scholar 

  24. S. Klaiman, A.U.J. Lode, K. Sakmann, O.I. Streltsova, O.E. Alon, L.S. Cederbaum, A.I. Streltsov, in High Performance Computing, in Science and Engineering ’14: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2014, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2015), pp. 63–86

    Google Scholar 

  25. O.E. Alon, V.S. Bagnato, R. Beinke, I. Brouzos, T. Calarco, T. Caneva, L.S. Cederbaum, M.A. Kasevich, S. Klaiman, A.U.J. Lode, S. Montangero, A. Negretti, R.S. Said, K. Sakmann, O.I. Streltsova, M. Theisen, M.C. Tsatsos, S.E. Weiner, T. Wells, A.I. Streltsov, in High Performance Computing, in Science and Engineering ’15: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2015, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2016), pp. 23–50

    Google Scholar 

  26. O.E. Alon, R. Beinke, L.S. Cederbaum, M.J. Edmonds, E. Fasshauer, M.A. Kasevich, S. Klaiman, A.U.J. Lode, N.G. Parker, K. Sakmann, M.C. Tsatsos, A.I. Streltsov, in High Performance Computing, in Science and Engineering ’16: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2016, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2016), pp. 79–96

    Google Scholar 

  27. O.E. Alon, R. Beinke, C. Bruder, L.S. Cederbaum, S. Klaiman, A.U.J. Lode, K. Sakmann, M. Theisen, M.C. Tsatsos, S.E. Weiner, A.I. Streltsov, in High Performance Computing, in Science and Engineering ’17: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2017, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Heidelberg, 2018), pp. 93–115

    Google Scholar 

  28. O. E. Alon, V. S. Bagnato, R. Beinke, S. Basu, L. S. Cederbaum, B. Chakrabarti, B. Chatterjee, R. Chitra, F. S. Diorico, S. Dutta, L. Exl, A. Gammal, S. K. Haldar, S. Klaiman, C. Lévêque, R. Lin, N. J. Mauser, P. Molignini, L. Papariello, R. Roy, K. Sakmann, A. I. Streltsov, G. D. Telles, M. C. Tsatsos, R. Wu, and A. U. J. Lode, High Performance Computing in Science and Engineering ’17: Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2018, edited by W. E. Nagel, D. H. Kröner, and M. M. Resch (Springer, Heidelberg, 2019), pp. XX-YY

    Google Scholar 

  29. K. Sakmann, A.I. Streltsov, O.E. Alon, L. S. Cederbaum Phys. Rev. A 78, 023615 (2008)

    Google Scholar 

  30. R.J. Glauber, Phys. Rev. 130, 2529 (1963)

    Google Scholar 

  31. O. Penrose, L. Onsager, Phys. Rev. 104, 576 (1956)

    Google Scholar 

  32. O.E. Alon, L.S. Cederbaum, Phys. Rev. Lett. 95, 140402 (2005)

    Google Scholar 

  33. R.W. Spekkens, J.E. Sipe, Phys. Rev. A 59, 3868 (1999)

    Google Scholar 

  34. A.I. Streltsov, L.S. Cederbaum, N. Moiseyev, Phys. Rev. A 70, 053607 (2004)

    Google Scholar 

  35. S. Zöllner, H.-D. Meyer, P. Schmelcher, Phys. Rev. A 74, 063611 (2006)

    Google Scholar 

  36. P. Noziéres and D. Saint James, J. Phys. (Paris) 43, 1133 (1982)

    Google Scholar 

  37. P. Noziéres, in Bose-Einstein Condensation, ed. by A. Griffin, D.W. Snoke, S. Stringari (Cambridge University Press, Cambridge, 1996), p. 15

    Google Scholar 

  38. E.J. Mueller, T.-L. Ho, M. Ueda, G. Baym, Phys. Rev. A 74, 033612 (2006)

    Google Scholar 

  39. U.R. Fischer, P. Bader, Phys. Rev. A 82, 013607 (2010)

    Google Scholar 

  40. Q. Zhou, X. Cui, Phys. Rev. Lett. 110, 140407 (2013)

    Google Scholar 

  41. Y. Kawaguchi, Phys. Rev. A 89, 033627 (2014)

    Google Scholar 

  42. S.-W. Song, Y.-C. Zhang, H. Zhao, X. Wang, W.-M. Liu, Phys. Rev. A 89, 063613 (2014)

    Google Scholar 

  43. H.H. Jen, S.-K. Yip, Phys. Rev. A 91, 063603 (2015)

    Google Scholar 

  44. A.R. Kolovsky, Phys. Rev. A 95, 033622 (2017)

    Google Scholar 

  45. B. Chatterjee, A.U.J. Lode, Phys. Rev. A 98, 053624 (2018)

    Google Scholar 

  46. R. Roy, A. Gammal, M.C. Tsatsos, B. Chatterjee, B. Chakrabarti, A.U.J. Lode, Phys. Rev. A 97, 043625 (2018)

    Google Scholar 

  47. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Phys. Rev. Lett. 81, 3108 (1998)

    Google Scholar 

  48. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd edn. (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  49. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Science 269, 198 (1995)

    Google Scholar 

  50. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995)

    Google Scholar 

  51. M. Girardeau, J. Math Phys. 1, 516 (1960)

    Google Scholar 

  52. G. Zürn, F. Serwane, T. Lompe, A.N. Wenz, M.G. Ries, J.E. Bohn, and S. Jochim Phys. Rev. Lett. 108, 075303 (2012)

    Google Scholar 

  53. T. Jacqmin, J. Armijo, T. Berrada, K.V. Kheruntsyan, and I. Bouchoule Phys. Rev. Lett. 106, 230405 (2011)

    Google Scholar 

  54. O.E. Alon, L.S. Cederbaum, Phys. Rev. Lett. 95, 140402 (2005)

    Google Scholar 

  55. S. Zöllner, H.-D. Meyer, P. Schmelcher, Phys. Rev. A 78, 013629 (2008)

    Google Scholar 

  56. S. Zöllner, G.M. Bruun, C.J. Pethick, S.M. Reimann, Phys. Rev. Lett. 107, 035301 (2011)

    Google Scholar 

  57. S. Zöllner, Phys. Rev. A 84, 063619 (2011)

    Google Scholar 

  58. G.E. Astrakharchik, YuE Lozovik, Phys. Rev. A 77, 013404 (2008)

    Google Scholar 

  59. A.S. Arkhipov, G.E. Astrakharchik, A.V. Belikov, Y.E. Lozovik, JETP Lett. 82, 39 (2005)

    Google Scholar 

  60. G.E. Astrakharchik, G.E. Morigi, G. De Chiara, J. Boronat, Phys. Rev. A 78, 063622 (2008)

    Google Scholar 

  61. F. Deuretzbacher, J.C. Cremon, S.M. Reimann, Phys. Rev. A 81, 063616 (2010)

    Google Scholar 

  62. B. Chatterjee, I. Brouzos, L. Cao, P. Schmelcher, J. Phys. B 46, 085304 (2013)

    Google Scholar 

  63. E. Fasshauer, A.U.J. Lode, Phys. Rev. A 93, 033635 (2016)

    Google Scholar 

  64. S. Klaiman, A.U.J. Lode, A.I. Streltsov, L.S. Cederbaum, O.E. Alon, Phys. Rev. A 90, 043620 (2014)

    Google Scholar 

  65. A.U.J. Lode, M.C. Tsatsos, J.L. Temp, Phys. 181, 171 (2015)

    Google Scholar 

  66. T. Wells, A.U.J. Lode, V.S. Bagnato, M.C. Tsatsos, J.L. Temp, Phys. 180, 133 (2015)

    Google Scholar 

  67. U.R. Fischer, A.U.J. Lode, B. Chatterjee, Phys. Rev. A 91, 063621 (2015)

    Google Scholar 

  68. A.U.J. Lode, B. Chakrabarti, V.K.B. Kota, Phys. Rev. A 92, 033622 (2015)

    Google Scholar 

  69. A.U.J. Lode, C. Bruder, Phys. Rev. Lett. 118, 013603 (2017)

    Google Scholar 

  70. S.E. Weiner, M.C. Tsatsos, L.S. Cederbaum, A.U.J. Lode, Sci. Rep. 7, 40122 (2017)

    Google Scholar 

  71. A.U.J. Lode, C. Bruder, Phys. Rev. A 94, 013616 (2016)

    Google Scholar 

  72. R. Mottl, DOI: https://dx.doi.org/10.3929/ethz-a-010336231, Roton-type mode softening in a dissipative quantum many-body system with cavity-mediated long-range interactions, PhD Thesis, ETH Zürich (2014)

  73. P. Domokos, H. Ritsch, Phys. Rev. Lett. 89, 253003 (2002)

    Google Scholar 

  74. D. Nagy, G. Szirmai, P. Domokos, Eur. Phys. J. D 48, 127 (2008)

    Google Scholar 

  75. K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 1301 (2010)

    Google Scholar 

  76. J. Klinder, H. Keßler, M. Bakhtiari, Reza, M. Thorwart, and A. Hemmerich, Phys. Rev. Lett. 115, 230403 (2015)

    Google Scholar 

  77. A.U.J. Lode, S. Klaiman, O.E. Alon, A.I. Streltsov, L.S. Cederbaum, Phys. Rev. A 89, 053620 (2014)

    Google Scholar 

  78. O.E. Alon, A.I. Streltsov, K. Sakmann, A.U.J. Lode, J. Grond, L.S. Cederbaum, Chem. Phys. 401, 2 (2012)

    Google Scholar 

  79. I. Březinová, J. Burgdörfer, A.U.J. Lode, A.I. Streltsov, L.S. Cederbaum, O.E. Alon, L.A. Collins, B.I. Schneider, J. Phys.: Conf. Ser. 488, 012032 (2014)

    Google Scholar 

  80. A.U.J. Lode, A.I. Streltsov, K. Sakmann, O.E. Alon, L.S. Cederbaum, Proc. Natl. Acad. Sci. 109, 13521 (2012)

    Google Scholar 

  81. J. Grond, A.I. Streltsov, A.U.J. Lode, K. Sakmann, L.S. Cederbaum, and O. E. Alon Phys. Rev. A 88, 023606 (2013)

    Google Scholar 

  82. J.H.V. Nguyen, M.C. Tsatsos, D. Luo, A.U.J. Lode, G.D. Telles, V.S. Bagnato, R.G. Hulet, Phys. Rev. X 9, 011052 (2019)

    Google Scholar 

  83. P. Molignini, L. Papariello, A.U.J. Lode, R. Chitra, Phys. Rev. A 98, 053620 (2018)

    Google Scholar 

  84. A.U.J. Lode, F.S. Diorico, R. Wu, P. Molignini, L. Papariello, R. Lin, C. Lévêque, L. Exl, M.C. Tsatsos, R. Chitra, N.J. Mauser, New J. Phys. 20, 055006 (2018)

    Google Scholar 

  85. C. Lévêque and L. B. Madsen, DOI: https://doi.org/10.1088/1367-2630/aa6319, New J. Phys. 19, 043007 (2017)

  86. C. Lévêque and L. B. Madsen, DOI: https://doi.org/10.1088/1361-6455/aacac6, J. Phys. B 51, 155302 (2018)

  87. C. Lévêque, L.B. Madsen, to be published in J (Chem, Phys, 2019)

    Google Scholar 

  88. K. Sakmann, M. Kasevich, Nat. Phys. 12, 451 (2016)

    Google Scholar 

Download references

Acknowledgements

Financial support by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged. OEA acknowledges funding by the Israel Science Foundation (Grant No. 600/15). We acknowledge financial support by the Austrian Science Foundation (FWF) under grants P32033 and M2653 as well as by the Wiener Wissenschafts- und TechnologieFonds (WWTF) project No. MA16-066. We acknowledge financial support from FAPESP, the Department of Science and Technology, Government of India under DST Inspire Faculty fellowship, a FAPESP (grant No. 2016/19622-0), a UFC fellowship, and financial support from the Swiss National Science Foundation and Mr. G. Anderheggen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. U. J. Lode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Lode, A.U.J. et al. (2021). Crystallization, Fermionization, and Cavity-Induced Phase Transitions of Bose-Einstein Condensates. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '19. Springer, Cham. https://doi.org/10.1007/978-3-030-66792-4_5

Download citation