Skip to main content

Fully Resolved Auto-Igniting Transient Jet Flame Simulation

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering '19
  • 1081 Accesses

Abstract

This work investigates an auto-igniting impulsively started jet flame issuing into hot and vitiated co-flow by large eddy simulation (LES) with direct chemistry. The experiment from German Aerospace Center is reproduced. The direct chemistry model uses an augmented reduced mechanism that consists of 19 transported species. The targets are first to quantify the growth of the initial ignition kernel using fully resolved flow-fields and species concentrations, then to establish a reliable benchmark case for further studies. The grid study has shown that employed resolution is sufficient to describe the ignition chemistry since the ignition kernel appears at low velocities and fuel-lean conditions. Initial comparisons showed a perfect agreement between the simulations and the experiments for the statistically steady jet. For the transient part of this work, two injection cycles with higher-resolution and six injection cycles with lower-resolution LES have been performed. The estimated delay times and the location of the auto-ignition matched experimental observations. Most importantly, both the low and high-resolution LES show quite similar results, which implies that the resolved flow-fields are statistically converged, independent from the grid resolution. Only after rigorous validation, this simulation is planned to be an ideal benchmark case for such studies of pulsed jets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.M. Arndt, Personal communication, 26 November 2016 (2016)

    Google Scholar 

  2. C.M. Arndt, J.D. Gounder, W. Meier, M. Aigner, High-speed imaging of auto-ignition of pulsed methane jets in a hot vitiated co-flow. Appl. Phys. B 108(2), 407–417 (2012)

    Article  Google Scholar 

  3. C.M. Arndt, R. Schießl, J.D. Gounder, W. Meier, M. Aigner, Flame stabilization and auto-ignition of pulsed methane jets in a hot coflow: influence of temperature. Proc. Combust. Inst. 34(1), 1483–1490 (2013)

    Article  Google Scholar 

  4. C.M. Arndt, M.J. Papageorge, F. Fuest, J.A. Sutton, W. Meier, M. Aigner, The role of temperature, mixture fraction, and scalar dissipation rate on transient methane injection and auto-ignition in a jet in hot coflow burner. Combust. Flame 167, 60–71 (2016)

    Article  Google Scholar 

  5. G. Cho, D. Jeong, G. Moon, C. Bae, Controlled auto-ignition characteristics of methane-air mixture in a rapid intake compression and expansion machine. Energy 35(10), 4184–4191 (2010)

    Article  Google Scholar 

  6. J. Craske, IMA J. App. Math. 82(2), 305–333 (2016)

    MathSciNet  Google Scholar 

  7. J. Craske, M. van Reeuwijk, J. Fluid Mech. 792, 1013–1052 (2016)

    Article  MathSciNet  Google Scholar 

  8. P. Domingo, L. Vervisch, D. Veynante, Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008)

    Article  Google Scholar 

  9. A. Fiolitakis, P. Ess, P. Gerlinger, M. Aigner, Anwendung eines transportgleichungs-PDF-verfahrens zur berechnung der selbstzündung eines methan-freistrahles, in Proceedings of 27. Deutscher Flammentag (2015), pp. 617–628

    Google Scholar 

  10. S.S. Girimaji, Y. Zhou, Analysis and modeling of subgrid scalar mixing using numerical data. Phys. Fluids 8, 1224–1236 (1996)

    Article  Google Scholar 

  11. E. Inanc, A.M. Kempf, Numerical study of a pulsed auto-igniting jet flame with detailed tabulated chemistry. Fuel 252, 408–416 (2019)

    Article  Google Scholar 

  12. E. Inanc, M.T. Nguyen, S. Kaiser, A.M. Kempf, High-resolution LES of a starting jet. Comput. Fluids 140, 435–449 (2016)

    Article  MathSciNet  Google Scholar 

  13. A.M. Kempf, M. Klein, J. Janicka, Efficient generation of initial-and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74(1), 67–84 (2005)

    Article  Google Scholar 

  14. A.M. Kempf, B.J. Geurts, J.C. Oefelein, Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame. Combust. Flame 158(12), 2408–2419 (2011)

    Article  Google Scholar 

  15. M. Klein, A. Sadiki, J. Janicka, A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)

    Article  Google Scholar 

  16. T. Lu, C.K. Law, A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with no chemistry. Combust. Flame 154(4), 761–774 (2008)

    Article  Google Scholar 

  17. C.N. Markides, E. Mastorakos, An experimental study of hydrogen autoignition in a turbulent co-flow of heated air. Proc. Combust. Inst. 30(1), 883–891 (2005)

    Article  Google Scholar 

  18. E. Mastorakos, Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci. 35(1), 57–97 (2009)

    Article  Google Scholar 

  19. E. Mastorakos, T.A. Baritaud, T.J. Poinsot, Numerical simulations of autoignition in turbulent mixing flows. Combust. Flame 109(1), 198–223 (1997)

    Article  Google Scholar 

  20. F. Nicoud, H.B. Toda, O. Cabrit, S. Bose, J. Lee, Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)

    Article  Google Scholar 

  21. M.J. Papageorge, C.M. Arndt, F. Fuest, W. Meier, J.A. Sutton, High-speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto-igniting in high-temperature, vitiated co-flows. Exp. Fluids 55(7), 1763–1783 (2014)

    Article  Google Scholar 

  22. M.J. Papageorge, C.M. Arndt, F. Fuest, W. Meier, J.A. Sutton, Erratum to: high-speed mixture fraction and temperature imaging of pulsed, turbulent fuel jets auto-igniting in high-temperature, vitiated co-flows. Exp. Fluids 57(1), 14–20 (2016)

    Article  Google Scholar 

  23. F. Proch, P. Domingo, L. Vervisch, A.M. Kempf, Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: analysis of the reaction zone dynamics with tabulated chemistry. Combust. Flame 180, 321–339 (2017)

    Google Scholar 

  24. M. van Reeuwijk, P. Salizzoni, G. Hunt, J. Craske, Phys. Rev. Fluids 1(7), 074301 (2016)

    Article  Google Scholar 

  25. G.P. Smith et al., Gri-mech 3.0 (2000), http://combustion.berkeley.edu/gri-mech/

  26. L.J. Spadaccini, M.B. Colket, Ignition delay characteristics of methane fuels. Prog. Energy Combust. Sci. 20(5), 431–460 (1994)

    Article  Google Scholar 

  27. J.G. Verwer, B.P. Sommeijer, W. Hundsdorfer, RKC time-stepping for advection-diffusion-reaction problems. J. Comput. Phys. 201(1), 61–79 (2004)

    Article  MathSciNet  Google Scholar 

  28. G. Zhou, Numerical simulations of physical discontinuities in single and multi-fluid flows for arbitrary Mach numbers. Ph.D. thesis, Chalmers University of Technology, Goteborg, Sweden (1995)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by DFG (Proj. No.: 393710272, KE 1751/13-1) and the Gauss Center High-Performance computing grant on Hazel Hen, Stuttgart (44141 GCS-JFLA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eray Inanc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Inanc, E., Kempf, A.M. (2021). Fully Resolved Auto-Igniting Transient Jet Flame Simulation. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '19. Springer, Cham. https://doi.org/10.1007/978-3-030-66792-4_17

Download citation

Publish with us

Policies and ethics