Skip to main content

Towards Full Resolution of Spray Breakup in Flash Atomization Conditions Using DNS

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering '19

Abstract

Ignition of rocket thrusters in orbit requires injection of cryogenic propellants into the combustion chamber. The chamber’s initial very low pressure leads to flash boiling that will then determine the dynamics of the spray breakup, the mixing of fuel and oxidizer, the reliability of the ignition and the subsequent combustion process. As details of the spray breakup process of cryogenic liquids under flash boiling conditions are not yet well understood, we use direct numerical simulations (DNS) to simulate the growth, coalescence and bursting of vapour bubbles in the superheated liquid that leads to the primary breakup of the liquid oxygen jet. Considering the main breakup patterns and droplet formation mechanisms for a range of conditions, we evaluate the effectiveness of the volume of fluid (VOF) method together with the continuum surface stress (CSS) model to capture the breakup of thin lamellae formed at high Weber numbers between the merging bubbles. A grid refinement study indicates convergence of the mass averaged droplet sizes towards an a priori estimated droplet diameter. The order of magnitude of this diameter can be estimated based on thermodynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Agbaglah, C. Josserand, S. Zaleski, Longitudinal instability of a liquid rim. Phys. Fluids 25(2), 022103 (2013). https://doi.org/10.1063/1.4789971

  2. R. Bardia, M.F. Trujillo, Assessing the physical validity of highly-resolved simulation benchmark tests for flows undergoing phase change. Int. J. Multiphase Flow 112 (2018). https://doi.org/10.1016/j.ijmultiphaseflow.2018.11.018

  3. I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop. Ind. Eng. Chem. Res. 53, 2498–2508 (2014). https://doi.org/10.1021/ie4033999

  4. R. Calay, A. Holdo, Modelling the dispersion of flashing jets using cfd. J. Hazard. Mater. 154(1–3), 1198–1209 (2008)

    Article  Google Scholar 

  5. K. Eisenschmidt, M. Ertl, H. Gomaa, C. Kieffer-Roth, C. Meister, P. Rauschenberger, M. Reitzle, K. Schlottke, B. Weigand, Direct numerical simulations for multiphase flows: an overview of the multiphase code FS3D. J. Appl. Math. Comput. 272(2), 508–517 (2016)

    Article  MathSciNet  Google Scholar 

  6. M. Ertl, J. Reutzsch, A. Nägel, G. Wittum, B. Weigand, Towards the implementation of a new multigrid solver in the dns code fs3d for simulations of shear-thinning jet break-up at higher reynolds numbers, in High Performance Computing in Science and Engineering ’ 17 Springer International Publishing (2018), pp. 269–287

    Google Scholar 

  7. J.W. Gaertner, A. Rees, A. Kronenburg, J. Sender, M. Oschwald, D. Loureiro, Large eddy simulation of flashing cryogenic liquid with a compressible volume of fluid solver, in ILASS–Europe 2019, 29th Conference on Liquid Atomization and Spray Systems (2019)

    Google Scholar 

  8. H. Gomaa, B. Weigand, M. Haas, C. Munz, Direct Numerical Simulation (DNS) on the influence of grid refinement for the process of splashing, in High Performance Computing in Science and Engineering ’08 Transactions of the High Performance Computing Center, Stuttgart (HLRS) (2008), pp. 241–255

    Google Scholar 

  9. I. Karathanassis, P. Koukouvinis, M. Gavaises, Comparative evaluation of phase-change mechanisms for the prediction of flashing flows. Int. J. Multiph. Flow 95, 257–270 (2017)

    Article  MathSciNet  Google Scholar 

  10. B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with surfer. J. Comput. Phys. 113(1), 134–147 (1994)

    Article  MathSciNet  Google Scholar 

  11. H.S. Lee, H. Merte, Spherical vapor bubble growth in uniformly superheated liquids. Int. J. Heat Mass Transf. 39(12), 2427–2447 (1996)

    Article  Google Scholar 

  12. M. Liu, D. Bothe: Numerical study of head-on droplet collisions at high weber numbers. J. Fluid Mech. 789, 785–805 (2016). https://doi.org/10.1017/jfm.2015.725

  13. D. Loureiro, J. Reutzsch, D. Dietzel, A. Kronenburg, B. Weigand, K. Vogiatzaki, DNS of multiple bubble growth and droplet formation in superheated liquids, in 14th International Conference on Liquid Atomization and Spray Systems,Chicago, IL, USA (2018)

    Google Scholar 

  14. A. Prosperetti, Vapor bubbles. Ann. Rev. Fluid Mech. 49 (2017)

    Google Scholar 

  15. W.J. Rider, D.B. Kothe, Reconstructing volume tracking. J. Comput. Phys. 141(2), 112–152 (1998)

    Article  MathSciNet  Google Scholar 

  16. M. Rieber, Numerische modellierung der dynamik freier grenzflachen in zweiphasenstromungen. Ph.D. thesis, Universitat Stuttgart (2004)

    Google Scholar 

  17. J. Schlottke, B. Weigand, Direct numerical simulation of evaporating droplets. J. Comput. Phys. 227, 5215–5237 (2008)

    Article  MathSciNet  Google Scholar 

  18. R. Schmehl, J. Steelant, Computational analysis of the oxidizer preflow in an upper-stage rocket engine. J. Propul. Power 25(3), 771–782 (2009)

    Article  Google Scholar 

  19. L. Scriven, On the dynamics of phase growth. Chem. Eng. Sci. 10(1), 1 – 13 (1959). https://doi.org/10.1016/0009-2509(59)80019-1

  20. E. Sher, T. Bar-Kohany, A. Rashkovan, Flash-boiling atomization. Prog. Energy Combust. Sci. 34, 417–439 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The simulations presented in this work were performed on the CRAY XC40 Hazel-Hen of the High Performance Computing Center Stuttgart (HLRS). This work is part of the HAoS-ITN project and has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 675676 (DL). We also acknowledge funding by DFG through the Collaborative Research Center SFB-TRR75 (JR, AK, BW) and by the UK’s Engineering and Physical Science Research Council support through the grant EP/P012744/1 (KV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Loureiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Loureiro, D.D., Reutzsch, J., Kronenburg, A., Weigand, B., Vogiatzaki, K. (2021). Towards Full Resolution of Spray Breakup in Flash Atomization Conditions Using DNS. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '19. Springer, Cham. https://doi.org/10.1007/978-3-030-66792-4_15

Download citation

Publish with us

Policies and ethics